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PROBABILISTIC MACHINE LEARNING

= ML methods that connect domain knowledge to data.
= Provides a computational methodology for analyzing data

= Goal: A methodology that is expressive, scalable, easy to develop



APPLIED BAYESIAN STATISTICS

= Statistical methods that connect domain knowledge to data.
= Provides a computational methodology for analyzing data

= Goal: A methodology that is expressive, scalable, easy to develop



Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei PNAS 2013]
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Topics found in 1.8M articles from the New York Times

[Hoffman+ JMLR 2013]



Population analysis of 2 billion genetic measurements

[Gopalan+ Nature Genetics 2016]



Neuroscience analysis of 220 million fMRI measurements

[Manning+ PLOS ONE 2014]



Lavadores

Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir+ JMLR 2016]
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The probabilistic pipeline

KNOWLEDGE &
QUESTION

3
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Make assumptions

Discover patterns

Predict & Explore

= Customized data analysis is important to many fields.

= Pipeline separates assumptions, computation, application

= Eases collaborative solutions to statistics problems




The probabilistic pipeline

KNOWLEDGE &
QUESTION
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Make assumptions

Discover patterns

Predict & Explore

= Posterior inference is the key algorithmic problem.

= Answers the question: What does this model say about this data?

= Today: Scalable and general approaches to posterior inference
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[Box, 1980; Rubin, 1984; Gelman+ 1996; Blei, 2014]




Bayesian statistics / Probabilistic machine learning

= A probabilistic model is a joint distribution of hidden variables z and
observed variables x,

p(z,x).

= Inference about the unknowns is through the posterior, the conditional
distribution of the hidden variables given the observations

= For most interesting models, the denominator is not tractable. We appeal
to approximate posterior inference.



Variational inference

p(z]x)

7 KL(q(z:v*) || p(z| %)

= VI solves inference with optimization.
(Contrast this with MCMC.)

= Posit a variational family of distributions over the latent variables,
q(z; »)

= Fit the variational parameters » to be close (in KL) to the exact posterior.



Example: Mixture of Gaussians
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[images by Alp Kucukelbir; Blei+ 2017]
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[Peterson and Anderson 1987] [Jordan et al. 1999]

[Hinton and van Camp 1993]

= Variational inference (VI) adapts ideas from statistical physics to
probabilistic inference. Peterson and Anderson (1987) fits a neural
network with mean-field methods.

= In the 1990s, M. Jordan, T. Jaakkola, L. Saul, and Z. Ghahramani
generalized it to many models. (A review paper is Jordan+ 1999.)

= In parallel, Hinton and Van Camp (1993) developed mean-field methods
for neural networks. Other applications included MoE (Waterhouse+
1996), HMMs (MacKay, 1997), and more NN (Barber and Bishop, 1998).



Today
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[Kingma and Welling 2013] [Rezende et al. 2014] [Kucukelbir et al. 2015]

= There is now a flurry of new work on variational inference, making it
scalable, easier to derive, faster, and more accurate.

= VI touches many areas: probabilistic programming, reinforcement
learning, neural networks, convex optimization, and Bayesian statistics.



Stochastic optimization makes VI better

p(zlx)

7 KL(q(z:v*) || p(z| %)

= Stochastic VI scales up VI to massive data. [Hoffman+ 2013]

= Black box VI generalizes VI to a wide class of models. [Ranganath+ 2014]
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Stochastic Variational Inference



Motivation: Topic Modeling

Topic models use posterior inference to discover the hidden thematic
structure in a large collection of documents.



Model: Latent Dirichlet Allocation (LDA)

Seeking Life’s Bare (Genetic) Necessities
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Documents exhibit multiple topics.

ADAPTED FROM NCBI



Latent Dirichlet Allocation (LDA)
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= Each topic is a distribution over words
= Each document is a mixture of corpus-wide topics

= Each word is drawn from one of those topics



Latent Dirichlet Allocation (LDA)

Topic proportions and

Topics Documents X
assignments
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= But we only observe the documents; everything else is hidden.

= So we want to calculate the posterior
p(topics, proportions, assignments | documents)

(Note: millions of documents; billions of latent variables)



LDA as a Graphical Model
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= A schematic of the generative process
= Defines a factorization of the joint distribution

= Connects to assumptions and algorithms



Posterior Inference
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= The posterior of the latent variables given the documents is

p(B,0,z,w) .
fﬁ fﬂ Zzp(ﬁ,a,Z,W)

p(B,0,z|w) =

= We can’t compute the denominator, the marginal p(w).

= We use variational inference.



Mean-field variational inference for LDA

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not all that far apart.” ¢

ecially in

How many genes does an organism ne comparison to the 75,000 g the hu <
survive? Last week at the man genome, notes Siv Andersson of Uppsala S
here, two genome rescarchers with radically  University in Sweden, who arrived at the

different approaches presented complemen- 800 number. But coming up with a consen-

tary views of the basic genes needed for life.  sus answer may be more than just a genetic «
One rescarch team, using computer analy- numbers game, particularly as more and S
ses to compare known genomes, concluded  more genomes are completely mapped and

nisms can he sustained with  sequenced. “It may be a way of «
estlifeforms any newly sequenced genome,” explai
Arcady Mushegian, a computational mo
st at the National Center

g ion (NCBI)

that today's
just 250 genes, and that the ear
128 genes. The

ped

required a mere
ather researcher ma
in a simple parasite and esti

Probability
0.2
L

mated that for this organism, mparing an =

800 genesare plenty todo the | R °

job—but that anything shore g

of 100 wouldn’t be enough 3 H H
Although the numbers don’t == 1 .

match precisely, those predictions

1 8 16 26 36 46 56 66 76 86 96

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12 mate of the minimum modern and ancient genomes.

Topics

SCIENCE  VOL. 272 » 24 MAY 1996



Mean-field variational inference for LDA
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Mean-field VI and Stochastic VI

Subsample Infer local Update global
data structure structure

Road map:

= Define the generic class of conditionally conjugate models
= Derive classical mean-field VI

= Derive stochastic VI, which scales to massive data



Conditionally conjugate models

Global variables R 'B

¥ 1
Local variables Zi < ) . Xi
n

p(B.zx) =p(B)| [pGixIP)
i=1

= The observations are x = xy.,,.

The local variables are z = z;.,,.

= The global variables are f3.

The ith data point x; only depends on z; and f.

Compute p(f3,z|x).



Conditionally conjugate models

Global variables R 'B

¥ 1
Local variables Zi < ) . Xi
n

p(B.zx) =p(B)| [pGixIP)
i=1

= A complete conditional is the conditional of a latent variable given the
observations and other latent variables.

= Assume each complete conditional is in the exponential family,

p(z; | B,x;) = expfam(z; ; n,(B,x;))
p(B12,x) = expfam(f ; n,y(z,x)),

where expfam(z; 1) = h(z) exp{n 'z —a(n)).



Conditionally conjugate models

Global variables R '3

X
Local variables . l

p(B.2.%) =p(B)] [pCz.x18)
i=1

= Bayesian mixture models = Dirichlet process mixtures, HDPs
= Time series models = Multilevel regression
(HMMs, linear dynamic systems) (linear, probit, Poisson)
= Factorial models = Stochastic block models
= Matrix factorization = Mixed-membership models

(factor analysis, PCA, CCA) (LDA and some variants)



Variational inference

Minimize KL between q(f3, z; ) and the posterior p(f, z | x).



The evidence lower bound

'g(v) = ]Eq [logp(ﬂ)zﬁ X)] - ]Eq [logCI(ﬂ,Z, V)]
Expected compie?e log likelihood Negati\;.rentropy

= KL is intractable; VI optimizes the evidence lower bound (ELBO) instead.

— It is a lower bound on log p(x).
— Maximizing the ELBO is equivalent to minimizing the KL.

= The ELBO trades off two terms.

— The first term prefers g(-) to place its mass on the MAP estimate.
— The second term encourages q(-) to be diffuse.

= Caveat: The ELBO is not convex.



Mean-field variational inference
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= The form of q(f3, z) defines the variational family.

= The mean-field family is fully factorized,
a(B,z; 4, 9)=q(B; V] Jat; ¢0)-
i=1

= Each factor is the same family as the model’s complete conditional.

p(B1z,x) = expfam(f ; ny(z,%))
q(B; A) =expfam(f; 1)



Mean-field variational inference

Qﬁ A OB
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= Optimize the ELBO,
Z(A,¢)=E,[logp(B,z,x)]—E, [logq(B,z)].
= Traditional VI uses coordinate ascent
AT =E, [’f)g(Z, X)]§ ¢ =E,[n:(B,x)]
It iteratively updates each parameter [Ghahramani and Beal, 2001] .

= Notice the relationship to Gibbs sampling [Gelfand and Smith, 1990] .



Mean-field variational inference for LDA
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= Local variables are per-document variables 6, and z,.
Global variables are the topics 31, ..., Bk.

= The mean-field family is

q(B.9, z)—r[q(/sk, xk)]—[q(ed, m)ﬁq(zdn, i)

k=1 d=1

= Classical VI iteratively updates each variational parameter.



Mean-field variational inference for LDA
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Mean-field variational inference for LDA
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Stochastic variational inference
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= Classical VI is inefficient:

— Do some local computation for each data point.

— Aggregate these computations to re-estimate global structure.
— Repeat.

= This cannot handle massive data.

= Stochastic variational inference (SVI) scales VI to massive data.



Stochastic variational inference
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Stochastic optimization

A STOCHASTIC APPROXIMATION METHOD'

By HerBERT RoBBINS AND SuTToN MoNRO
University of North Carolina

1. Summary. Let M (z) denote the expected value at level z of the response
to a certain experiment. M (x) is assumed to be a monotone function of z but is
unknown to the experimenter, and it is desired to find the solution 2 = 8 of the
equation M(x) = o, where « is a given constant. We give a method for making
successive experiments at levels 1 , z, , - - - in such a way that z, will tend to 6 in
probability.

= Replace the gradient with cheaper noisy estimates [Robbins and Monro, 1951]
= Guaranteed to converge to a local optimum [Bottou, 1996]

= This algorithm has enabled modern machine learning.



Stochastic optimization

A STOCHASTIC APPROXIMATION METHOD'
By HerBERT RoBBINS AND SuTToN MoNRO
University of North Carolina

1. Summary. Let M (z) denote the expected value at level z of the response
to a certain experiment. M (x) is assumed to be a monotone function of z but is
unknown to the experimenter, and it is desired to find the solution 2 = 8 of the
equation M(x) = o, where « is a given constant. We give a method for making
successive experiments at levels 1 , z, , - - - in such a way that z, will tend to 6 in
probability.

= Use noisy gradients to update
Vi1 = Vet ptﬁv,%(v[)
= Requires unbiased gradients E [@V.Z(v)] =V, %)

= Requires the step size sequence p, follows Robbins-Monro conditions



The complete conditional of the global variable

= The complete conditional of the global variable is

p(B |2,x) = expfam(p ; 1,(2, %))
ng(Z, X) =a+ Z:’lzl t(zi’xi),

where t(-,-) is a function and « is the hyperparameter to the prior.
(This is from classical theory of conjugate priors [Diaconis and Ylvisaker 1979].)

= The coordinate ascent update is
A* =a+ Z?:] E¢l[t(Zl,xl)]

= For large datasets, this update is expensive.



Stochastic variational inference

= The natural gradient of the ELBO [Amari, 1998; Sato, 2001; Hoffman+ 2013] :
Vit () = (a+ X, By [t(Z0x)]) — 2.

= Construct a noisy natural gradient:

j ~ Uniform(1,...,n)
VL) = a+nEy[1(Z,x)] - 2.

= It is good for stochastic optimization.

— Its expectation is the exact gradient (unbiased).
— It only depends on optimized parameters of one data point (cheap).



Stochastic variational inference

Input: data x, model p(f, z,x).



Stochastic variational inference

Input: data x, model p(f, z,x).

Initialize A randomly. Set p, appropriately.



Stochastic variational inference

Input: data x, model p(f, z,x).
Initialize A randomly. Set p, appropriately.

while not converged do




Stochastic variational inference

Input: data x, model p(f, z,x).
Initialize A randomly. Set p, appropriately.

while not converged do

Sample j ~ Unif(1,...,n). Set local parameter

¢ —E, [n:(B,x)].




Stochastic variational inference

Input: data x, model p(f, z,x).
Initialize A randomly. Set p, appropriately.
while not converged do
Sample j ~ Unif(1,...,n). Set local parameter
¢ < Ex [n,(8,%)].
Set intermediate global parameter

A

A =a+nE,[t(Z;,x)].




Stochastic variational inference

Input: data x, model p(f, z,x).

Initialize A randomly. Set p, appropriately.

while not converged do

Sample j ~ Unif(1,...,n). Set local parameter

¢ < Ex [n,(8,%)].
Set intermediate global parameter
A= a+nEy[t(Z;,x)].

Set global parameter

A=(1—p)A+p A

end
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Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei, PNAS 2013]



Population analysis of 2 billion genetic measurements

[Gopalan+ Nature Genetics 2016]



SVI scales many models

Update global
structure

Infer local
structure

Subsample
data

= Bayesian mixture models = Dirichlet process mixtures, HDPs

Multilevel regression

= Time series models

(HMMs, linear dynamic systems) (linear, probit, Poisson)
= Factorial models = Stochastic block models
= Matrix factorization = Mixed-membership models

(factor analysis, PCA, CCA) (LDA and some variants)



Black Box Variational Inference



Variational inference

p(z]x)

7 KL(q(z:v*) || p(z| %)

= VI solves inference with optimization.
= Posit a variational family of distributions over the latent variables.

= Fit the variational parameters v to be close (in KL) to the exact posterior.



A.1 Computing Ellog(6; )]
The need to compute the expected value of the log of a single probability component under the
Dirichlet arises repeatedly in deriving the inference and parameter estimation procedures for LDA
This value can be easily computed from the natural parameterization of the exponential family
representation of the Dirichlet distribution

Recall that a distribution is in the exponential family if it can be written in the form:

A}

¢, and A(n) is the log of the normal-

plx|n) = h(x)exp {n"T(x) -

where 1 is the natural parameter, T
ization factor.
‘We can write the Dirichlet in this form by exponentiating the log of Eq. (1):

(x) is the sufficient stat

P(0]a) = exp { (SE (o — 1)logh;) +logT' ($E; ) — Si- log () }

From this form, we immediately see that the natural parameter of the Dirichlet is 1; = ; — 1 and
the sufficient statistic is T (6;) = log6;. Furthermore, using the general fact that the derivative of
the log normalization factor with respect to the natural parameter is equal to the expectation of the
sufficient statistic, we obtain:

Ellogb; o] = W(a;) ~ W (3} )
where W is the digamma function, the first derivative of the log Gamma function.
A.3.2 VARIATIONAL DIRICHLET

Next, we maximize Eq. (15) with respect o y;. the ith component of the posterior Dirichlet param-
eter. The terms containing y; are:

‘ X
L\vlzz(u,—l)(‘l‘(v») (Shrvi )+n2|¢m W) =W (Sho1)
«

—logI" (3} W ()

+logT () = Y (i~

implifies to:

W(SE 7)) (it SN g —vi) — log T (S5-,v;) +log ()

Ly = E (W) —
We take the derivative with respect to ;2

Lo 3
S =W (ot S o) =¥ (8500) 3 (o 5001

f

Setting this equation to zero yields a maximum at:

+ 30 b an

Since Eq. (17) depends on the variational multinomial ¢, full variational inference requires
alternating between Eqs. (16) and (17) until the bound converges.

Finally, we expand Eq. (14) in terms of the model parameters (ct,f3) and the variational parameters
(7.)- Each of the five lines below expands one of the five terms in the bound:

. .
(w:um:Iogr(zfz.uj)fglogr(awg(a.—|>(w(v,>—\v(25:m))
Nk
+2|E‘om(lv(*mf\v( i
NV
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Nk
- 2. ; nilogdni,

113))

where we have made use of Eq. (8).
In the following two sections, we show how to maximize this lower bound with respect to the
variational parameters ¢ and .

A.3.1 VARIATIONAL MULTINOMIAL

We first maximize Eq. (15) with respect to . the probability that the nth word is generated by
latent topic i. Observe that this is a constrained maximization since 5% ¢,y = 1.

We form the Lagrangian by isolating the terms which contain ¢, and adding the appropriate
Lagrange multipliers. Let i, be p(w} = 1|/ = 1) for the appropriate v. (Recall that cach w is
a veetor of size V with exactly one component equal to one; we can select the unique v such that
wy, = 1):

Ligy) = 0ni (W05) W (S5210)) + Guilog Biv — i log b+ A (e i — 1) .

where we have dropped the arguments of L for simplicity, and where the subscript ¢,; denotes that
we have retained only those terms in L that are a function of ¢,;. Taking derivatives with respect to
ui, We obtain:

al
o = V) - (Shervi) +logBis — logui — 14+
Setting this derivative to zcro yields the maximizing value of the variational parameter g (cf. Eq. 6):

Gui = Bivexp (¥lv) =W (35-,1)) (16)

[from Blei+ 2003]



Black box variational inference
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= Easily use variational inference with any model; no more appendices!
= Perform inference with massive data

= No mathematical work beyond specifying the model



Model: Deep exponential families
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Deep exponential families

Zn+1,k

&M*é
& Wik @ Zn .k Ingk ~ EXP—FAM(g(WZan,(_H))
y

Ket1

Ky

Generalizes and expands probabilistic deep networks:

= Bernoulli, for binary representations [Sigmoid Belief Net, Neal 1992]
= Gaussian, for real representations [Deep Latent Gaussian Models, Rezende 2014]
= Poisson, for count representations

= Gamma, for positive (and sparse) representations



New York Times

“Government”

“Legislative”

ludicial’ “Media and

Religion’

“Political Partie:

charges senate tax program campaign | [ school officials party editor | [ television
federal house | | insurance || programs bush students || meeting government book news
case bill pay system dukakis schools | | agreement political times cbs
i congress | | money || government jackson | | education plan minister magazine || radio
investigation senator fund public college official country newspaper nbc

= 160,000 documents; 8,500 vocabulary terms; 10M observed words

= The posterior weights provide topics and topics-of-topics.



Deep exponential families

Zn+1,k

e {0
& Wik @ Znlk Ingk ~ EXP—FAM(g(WZkZ,,,(+1))
y

Ket1

Ky

= We want to try lots of types of DEFs. But how to do inference?
= DEFs contain cascades of latent variables.

= DEFs are not conditionally conjugate.



Nonconjugate models

Global variables R 'B

Local variables

QXz

p(B.zx) =p(B)] [pGix1P)
i=1

Nonlinear time series models
Deep latent Gaussian models
Models with attention
Generalized linear models

Stochastic volatility models

= Discrete choice models

= Bayesian neural networks
= Deep exponential families
= Correlated topic models

= Sigmoid belief networks



Black box variational inference
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= Easily use variational inference with any model
= Perform inference with massive data

= No mathematical work beyond specifying the model



Black box variational inference

z(‘))) = IEq [logp(ﬁ,z, X)] - ]Eq [logq(/jyz; 'V)]
Expected compi;e log likelihood Negativ;::ntropy

The main idea behind BBVI:

= write the gradient of the ELBO as an expectation
= sample from g(-) to form a Monte Carlo estimate of the gradient

= use the MC estimate in a stochastic optimization



Black box variational inference

z(‘))) = IEq [logp(ﬁ,z, X)] - ]Eq [logq(/jyz; 'V)]
Expected compi;e log likelihood Negativ;;ntropy

= Keep in mind the black box criteria.

= We should only need to:

- sample from q(f3, z)
— evaluate things about g(3, z)
- evaluate logp(f,z,x)

= These criteria let us perform approximate inference on many models.



Black box variational inference

z(‘))) = IEq [logp(ﬁ,z, X)] - ]Eq [logq(/jyz; 'V)]
Expected compi;e log likelihood Negativ;;ntropy

= Research in BBVI is about how to write the gradient as an expectation.

= While SVI uses stochastic optimization to overcome large datasets,
BBVI uses it to overcome difficult objective functions.

= Two main strategies:

— Score gradients (today)
— Reparameterization gradients (used e.g., in the VAE)



The score gradient

V, % =Ey»[V,logq(z; v) (logp(x,z) —logq(z; v))]

score function instantaneous ELBO

= Use the score function to write the gradient as an expectation.
[Ji+ 2010; Paisley+ 2012; Wingate+ 2013; Ranganath+ 2014; Mnih+ 2014]

= Also called the likelihood ratio or REINFORCE gradient
[Glynn 1990; Williams 1992]

= Pushes v to give high probability on z with large instantaneous ELBO.



The score gradient

V, % =Ey)[V,logq(z; v) (logp(x,z) —logq(z; ))]

score function instantaneous ELBO

Satisfies the black box criteria — no model-specific analysis needed.

= sample from q(z; v)
= evaluate V, logq(z; v)

= evaluate logp(x,z) and logq(z)



Black box variational inference

Input: data x, model p(z, x).



Black box variational inference
Input: data x, model p(z, x).

Initialize ¥ randomly. ~Set p; appropriately.



Black box variational inference
Input: data x, model p(z, x).
Initialize ¥ randomly. ~Set p; appropriately.

while not converged do




Black box variational inference

Input: data x, model p(z, x).

Initialize ¥ randomly. ~Set p; appropriately.

while not converged do

Take S samples from the variational distribution

z[s]~q(z;v) s=1...

S



Black box variational inference

Input: data x, model p(z, x).

Initialize ¥ randomly. ~Set p; appropriately.

while not converged do

Take S samples from the variational distribution
z[s]~q(z;v) s=1...S

Calculate the noisy score gradient

S
& = 5 D1V, logq(als]; »)(ogp(x, 2[s]) ~ loga(zls; )

s=1




Black box variational inference

Input: data x, model p(z, x).

Initialize ¥ randomly. ~Set p; appropriately.

while not converged do

Take S samples from the variational distribution
z[s]~q(z;v) s=1...S

Calculate the noisy score gradient

S
& = 5 D1V, logq(als]; »)(ogp(x, 2[s]) ~ loga(zls; )

s=1

Update the variational parameters

Ver1 = Ve + 08

end



BBVI: Making it work
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= Control the variance of the gradient [e.g., Paisley+ 2012; Ranganath+ 2014]
— Rao-Blackwellization, control variates, importance sampling
L] Adaptive step sizes [e.g., Duchi+ 2011; Kingma and Ba 2014; Kucukelbir+ 2016]

= SVI, for massive data [Hoffman+ 2013]



Deep exponential families
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Empirical study of DEFs

= NYT and Science (about 150K documents in each, about 7K terms)

= Many models: adjusted depth, types of latents, priors, and link

= Held-out perplexity (lower is better) [Wallach+ 2009]



DEF evaluation

Model p(w) NYT  Science
LDA [Blei+ 2003] 2717 1711
DocNADE [Larochelle+ 2012] 2496 1725
Sparse Gamma 100 ) 2525 1652
Sparse Gamma 100-30 r 2303 1539
Sparse Gamma 100-30-15 T 2251 1542
Sigmoid 100 ) 2343 1633
Sigmoid 100-30 N 2653 1665
Sigmoid 100-30-15 N 2507 1653
Poisson 100 0 2590 1620
Poisson 100-30 N 2423 1560
Poisson 100-30-15 N 2416 1576
Poisson log-link 100-30 r 2288 1523
Poisson log-link 100-30-15 T 2366 1545




Neuroscience analysis of 220 million fMRI measurements

[Manning+ 2014]



agichoke parm dip stonemill
® spread garlic herb It alouette
@arrs cracker table water garlic & herb
@pread gariic/herb alouette
 CaTs crackers table water black
® carrs cracker table water cracked pepper
@arrs crackers table water wisesame

@heddar smokey sharp deli counter dv
@ouda domestic dv

pep farm cracker butter thins
° ® pep farm dist crackers quartet ®avarti w/dill primo taglio dv ®rie president
@rie primo taglio

brie cambozola champignon

® carrs crackers whole wheat @ brie supreme dv.

@oast tiny pride of fran brie camgmbert de france dv
brie mushfoom champignon dv
‘®rackers water classic monet

@ouda smoked deli counter dv

@pread spinach alouette
@louette cheese spread sundrd tom w/bs!

. @ie ile de france cut/wrap
brie marquis de lafayette

@wellington wir crackers traditional

awellington wir crackers cracked pepper
whllington wir crackers tsted ssme
@nozziproscuitto rl primo taglio

@rackers monet classic shp

o dip artichoke ®ps toast garlic & cheese mussos
@ dip spinach signature 16 0z

Shopper on 5.7M purchases.

[Ruiz+ 2017]



Lavadores

Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir+ 2017]



A Tour of Variational Inference (with one picture)



PROBABILISTIC MACHINE LEARNING

= ML methods that connect domain knowledge to data.
= Provides a computational methodology for analyzing data

= Goal: A methodology that is expressive, scalable, easy to develop



The probabilistic pipeline

KNOWLEDGE &
QUESTION

3
|

Make assumptions

Discover patterns

Predict & Explore

= Posterior inference is the key algorithmic problem.

= Answers the question: What does this model say about this data?

= VI provides scalable and general approaches to posterior inference




Stochastic optimization makes VI better

p(zlx)

7 KL(q(z:v*) || p(z| %)

= Stochastic VI scales up VI to massive data.

= Black box VI generalizes VI to a wide class of models.



What classes of models can VI handle?

pzx)

/ KL(g(z:v*) || p(z| %)

= Conditionally conjugate [Gharamani and Beal 2001; Hoffman+ 2013]
= Not T, but can differentiate the log likelihood [Kucukelbir+ 2015]
= Not T, but can calculate the log likelihood [Ranganath+ 2014]

= Not T, but can sample from the model [Ranganath+ 2017]



How can we expand the variational family?

pzx)

/KL(g(z:v) || p(z] %)

= Structured variational inference [Saul and Jordan 1996; Hoffman and Blei 2015]
= Variational models [Lawrence 2001; Ranganath+ 2015; Tran+ 2015]
= Amortized inference [Kingma and Welling 2014; Rezende+ 2014]

= Sequential Monte Carlo [Naesseth+ 2018; Maddison+ 2017; Le+ 2017]



Which distance should we use? How good is it?

p@lx)

7 KL(g(z:v*) || p(z] %))

= Expectation propagation and inclusive KL [Minka 2001]
= Belief propagation [Yedidia 2001]
= Operator variational inference [Ranganath+ 2016]

= y-variational inference [Dieng+ 2017]



Can we make the algorithm better?

pzx)

Y KL(g(z:v*) || p(z] %)

= SVI and structured SVI [Hoffman+ 2013; Hoffman and Blei 2015]
= Proximity VI [Altosaar+ 2018]
= SGD as VI [Mandt+ 2017]

= Adaptive rates, averaged and biased gradients, etc. [Many papers]



What is guaranteed about VI?

p(z[x)

7 KL(q(@v*) || p(z| %)

= Asymptotic normality of Gaussian approximations [Hall+ 2011]

Risk bounds for VI [Pati+ 2017]
= Bernstein Von-Mises, model misspecification [Wang and Blei 2019, 2020]

= Convergence rates for VI [Alquier+ 2016, Zhang and Gao 2019]



How can we use VI in practice?

palx),

/KL(g(z:v*) || p(z| %)

= Correct for VI's underestimates of the posterior variance [Giordano+ 2015]

Software for VI [Minka 2014, Kucukelbir+ 2016]

= Best practices for finding good local optima

= How to check variational inferences
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Should I be skeptical about variational inference?
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(a) Linear Regression with ARD (b) Hierarchical Logistic Regression

= MCMC enjoys theoretical guarantees.
= But they usually get to the same place. [Kucukelbir+ 2016]

= We need more theory about variational inference ([E.g., Wang and Blei 2018] ).



Should I be skeptical about variational inference?
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= Variational inference underestimates the variance of the posterior.
= Relaxing the mean-field assumption can help.

= Here: A Poisson GLM [Giordano+ 2015]



Aside: The exponential family

p(x) = h(x) exp{n " t(x) —a(n)}

Terminology:

7 the natural parameter
t(x) the sufficient statistics
a(n) the log normalizer
h(x) the base density



Aside: The exponential family

p(x) = h(x) exp{n " t(x) —a(n)}

= The log normalizer is

a(n) = logf exp{n ' t(x)}dx

= It ensures the density integrates to one.

= Its gradient calculates the expected sufficient statistics

E[t(X)] =V, a(n).



Aside: The exponential family

p(x) = h(x) exp{n " t(x) —a(n)}

= Many common distributions are in the exponential family
— Bernoulli, categorical, Gaussian, Poisson, Beta, Dirichlet, Gamma, etc.

= Qutlines the theory around conjugate priors and corresponding posteriors

= Connects closely to variational inference [Wainwright and Jordan, 2008]



Model: Shopper

= Economists want to understand how people shop
= Shopper is a Bayesian model of consumer behavior [Ruiz+ 2017] .

= Use it to understand patterns of purchasing behavior and estimate the
effects of interventions (e.g., on price)



dﬁ%ﬂo@

T
baby items dog |tems seasonal frunts taco mgredlents

= Each customer walks into the store and sequentially chooses items, each
time maximizing utility. This leads to a joint:

) =P Vez 1)+ (Yo | 9.

= The customer picks each item conditional on features of the other items.
These features capture that, e.g.,

— taco shells and beans go well together
— a customer doesn’t need to buy four different types of salsa
— people who buy dog food also usually buy dog treats

= But these features are latent!



@@@

Y
baby items dog |tems seasonal fruits taco mgredlents

= The conditional probability of picking item c is a log linear model

p(yy; = c| previously selected items) o< exp{¥,.}.

i—1
— AT
\Ijtc - pc ay[j
J=1

= This is an embedding method [Bengio+ 2003, Rudolph+ 2016] .

= The parameter is

— Qe - (latent) attributes of taco shells
— Psalsa - attributes that go well with salsa



The Shopper posterior

@O@i@ Basket |
@@@%‘f@ Bagket 2

U&.@@@@ Basked n

= From a dataset of shopping trips, infer the posterior p(a, p | X).
= Posterior of per-item attributes and per-item interaction coefficients

= 3,200 customers; 5,600 items; 570K trips; 5.7M purchased items
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Shopper on 5.7M purchases.

[Ruiz+ 2017]



Shopper

Sdple T

Y
baby items dog |tems seasonal fruits taco |ngredients

= Shopper is not conditionally conjugate
= But we can evaluate logp(a, p,x) and its gradient V,, , logp(a, p,x).

= We can use BBVI with the reparameterization gradient.



Differentiable models

= Suppose logp(x,z) and logq(z) are differentiable with respect to z.
= Suppose the variational distribution can be written with a transformation,
€ ~s(e)

z=t(e, )
— z~q(z; v).

For example,

€ ~ Normal(0,1)
Z2=€0+U

— z ~ Normal(u, 02).

= Note: The variational parameters are part of the transformation,
but not the “noise” distribution.



conditionally

all models evaluable conjugate




The reparameterization gradient

V,Z =Ey, yz[logp(x, z)—logq(z; v)] Vv, t(e, v)

gradient of instananeous ELBO gradient of transformation

= This is the reparameterization gradient.
[Glasserman 1991; Fu 2006; Kingma+ 2014; Rezende+ 2014; Titsias+ 2014]

= Can use autodifferentiation to take gradients (especially of the model)

= Can use and reuse different transformations [e.g., Naesseth+ 2017]



Algorithm 1: *

Input: data x, model p(z, x).



Algorithm 2: *

Input: data x, model p(z, x).

Initialize ¥ randomly.
Set p, appropriately.



Algorithm 3: *

Input: data x, model p(z, x).

Initialize ¥ randomly.
Set p, appropriately.

while not converged do




Algorithm 4: *

Input: data x, model p(z, x).

Initialize ¥ randomly.
Set p, appropriately.

while not converged do

Take S samples from the auxillary variable

€ ~s(e) s=1...8




Algorithm 5: *

Input: data x, model p(z, x).

Initialize ¥ randomly.
Set p, appropriately.

while not converged do
Take S samples from the auxillary variable
€ ~s(e) s=1...8
Calculate the noisy gradient

S
. 1
&= g E vz[logp(X’ t(es’ vn)) - IOgCI(f(es, 1}n); vn)]vvt(es: vn)
s=1




Algorithm 6: *

Input: data x, model p(z, x).

Initialize ¥ randomly.
Set p, appropriately.

while not converged do
Take S samples from the auxillary variable
€ ~s(e) s=1...8
Calculate the noisy gradient
s
. 1
&= E Z vz[logp(xa t(es: vn)) - Iqu(t(esa 1}n); vn)]vvt(es: vn)
s=1

Update the variational parameters

Vo1 = Ve + P&

end
Reparameterization Black Box Variational Inference
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Shopper on 5.7M purchases.

[Ruiz+ 2017]



Lavadores

Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir+ 2017]



Score gradient

By [V 10gq(z; v)(logp(x,z) —logq(z; v))]

= Works for discrete and continuous models
= Works for a large class of variational approximations
= But the variance of the noisy gradient can be large

Reparameterization gradient

Ey)[V,[logp(x,z) —logq(z; »)]V ,t(e, v)]

= Requires differentiable models, i.e., no discrete variables
= Requires variational approximation to have form z = t(e, )
= Better behaved variance



Variance comparison
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[Kucukelbir+ 2017]



Models that can use the score gradient

all models




Models that can use the reparameterization gradient

differentiable




What is a variational autoencoder?



Deep generative models

MoDEL
@ & pixile)
: N (
.. ‘decoder”

e

= Deep generative model [Kingma+ 2013; Rezende+ 2014]

z; ~ AN(0,I)
X~ ‘/V(f(zli 9); 0.2)’

where f(z;; 0) is a neural network with parameters 6 and input z;.



Deep generative models

MoDEL

» p(zixile)
o X4,

TG

L(
'deco&er !

= Fix the global parameters 6. Infer the local variables z;,

p(z)p(x;|2;,0)
[ pE)p(x; 12}, 0)dz]

= This inference is intractable because of the integral in the denominator.

p(zi|x;,0) =



Amortized inference

v VARVATIONAL
J’ DistRiBvT\OV

= 0 q(zi; %i,v)
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Cgxisvy

= Use VI at the local level, aiming to fit a g(z;) that is close to the posterior.

= Amortization: the variational family q(z;;x;, ¥) is a function of the input x;
and shared variational parameters v [Gershman and Goodman 2014] .

= Let q(z;;x;, v) be A (g(x;; v), 1), where g(x;; v) is the inference network;
it has parameters v and input Xx;.



The variational autoencoder

v VARWATIONAL
J’ DistR\BvTION
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= Amortization ties together the ELBO for each z;. The objective is
n
Z(v)= Z Eqzix, ) [10gp(z;) +logp(x; | 2;, 0) —log q(z;;x;, v)].
i=1
= The expectation in the ith term uses q(z;;x;, v).

= Amortization is about “learning to infer.”
(Open research: there seems to be more to this story.)



The variational autoencoder

v VARVATIONAL
S S PrTRE Oy
L= 10 gl
P Xi h
o 3(xv) “encode r“

V)

= Use the reparameterization gradient.
= First write z; down as a transformation,

e~ N(0,1)
t({;‘,xi, 'V) =€ +g(xl; V).

= This transformation involves variational parameters v and datapoint Xx;.



The variational autoencoder

dv VAR\ATIONAL
U S DisTRIBUTION
- 0« q(zi%,v)
PX bz
eeeos “3‘{;;__-1})“'”“"“‘ I(e“(°&qr\\

V)

= With the amortized family, the reparameterization gradient is

n
V,& =y [V, (logp(z) +logp(x; |, 0) —1ogq(z;:x, M)V, (e, v,x)].

i=1
= We can calculate this gradient with Monte Carlo.

= The gradients involved—of the log likelihood, log variational factor, and
transformation—involve standard NN calculations (i.e., backprop) of
either the model’s NN (0) or the variational NN (v).



Fitting the model

MoDEL
» & F(z-.mle)
.: XL .
. ‘ 'deco&o.r"

f(zi;0)
= The ELBO is a bound on the log likelihood logp(x; ).

= Fit the model by following its gradient with respect to 6,

VoZ = ZEs(s) [Vglogp(x|z;, 0)].
i=1

Here again

Z; = t(é"xi; V).



So what is a VAE?

v
= 450
X; Pz
TG Sl
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DIstR\BVTION

= Simultaneously optimize the variational family v and model 6.
= AVAE

— samples ¢; for each datapoint and calculates z;.
— uses these samples to calculate noisy gradients with respect to v and 6.
— follows those gradients in a stochastic optimization

= (VAEs are implemented as a stochastic computational graph of the MC
approximation of the ELBO; backprop takes care of the rest.)



Algorithm 7: *

Input: data x.



Algorithm 8: *

Input: data x.

Initialize ¥ randomly; set p, appropriately.



Algorithm 9: *

Input: data x.

Initialize ¥ randomly; set p, appropriately.

while not converged do




Algorithm 10: *

Input: data x.

Initialize ¥ randomly; set p, appropriately.

while not converged do

for each datapoint i do
Draw the noise variable and calculate the latent variable

&~ </V(O> 1)’ 2 = t(ei’xi: V)

end




Algorithm 11: *

Input: data x.

Initialize ¥ randomly; set p, appropriately.

while not converged do

for each datapoint i do
Draw the noise variable and calculate the latent variable

Si ~ </V(O> 1)’ Z; = t(ebxi: V)
end

Calculate the noisy gradients

&= Z?:l V..(logp(z;) +logp(x; | 2;, 6,) — log q(2;;x;, v:))V , t(&;, X;, V)
8o = Z?=1 Vo logp(x; |2, 6;)




Algorithm 12: *

Input: data x.

Initialize ¥ randomly; set p, appropriately.

while not converged do

for each datapoint i do
Draw the noise variable and calculate the latent variable

&~ ‘/V(O> 1)’ z2; = t(ebxi: V)
end

Calculate the noisy gradients

&= Z?:l V..(logp(z;) +logp(x; | 2;, 6,) — log q(2;;x;, v:))V , t(&;, X;, V)
8o = Z?=1 Vo logp(x; |2, 6;)

Update the variational parameters and model parameters

Ver1 = Ve + Pegy
011 =0, + P&

end
The variational autoencoder



Let’s derive BBVI!



Why do we need black box variational inference?

= Here is a recipe for variational inference

Posit a model

Choose a variational family

Integrate (calculate the ELBO)
— Take derivatives

— Optimize

= What can go wrong?



A simple failure

= Take the simplest machine learning model, Bayesian logistic regression.

= Data are pairs (x;,y;)
— X; is a covariate
- y; €{0,1} is a binary label

— gz are the regression coefficients

= Conditional on covariates, Bayesian LR posits a generative process of labels

z~N(0,1)
¥;1x;,2 ~ Bernoulli(o (zx;)),

where o () is the logistic function, mapping reals to (0, 1).



= Consider just one data point (x,y). Sety = 1, so the datapoint is (x, 1).
= The goal is to approximate the posterior coefficient p(z|x,y).

= The variational family q(z; ¥) is a normal; ¥ = (u, o2). The ELBO is

£ (u,0%) = Ey[logp(z) +logp(y | x,z) —log q(z)]



= Try to calculate the ELBO:

L(u,0%) = Eg[logp(z)—logq(z) +logp(y|x,z)]



= Try to calculate the ELBO:

£(u,0?)

E,[logp(z) —logq(z) + logp(y | x,2)]

1 1
—E(,u2 +0?)+ 2 logo® + E,[logp(y|x,2)]+C



= Try to calculate the ELBO:

£(u,0?)

Eq[logp(z) —logq(z) +logp(y |x, )]
= —%(,u2 +0?)+ % logo® + E,[logp(y|x,2)]+C

1
= —%(MZ +0)+ 5 logo? +E,[yxz—log(1 + exp(xz))]



= Try to calculate the ELBO:

£(u,0?)

Eq[logp(z) —logq(z) +logp(y |x, )]
= —%(,u2 +0?)+ % logo® + E,[logp(y|x,2)]+C

1
= —%(MZ +0)+ 5 logo? +E,[yxz—log(1 + exp(xz))]

1 1
= —E(,u2 +02)+ > log 0% + yxu — E,[log(1 + exp(xz))]



= Try to calculate the ELBO:

£(u,0?)

Eq[logp(z) —logq(z) +logp(y |x, )]
= —%(,u2 +0?)+ % logo® + E,[logp(y|x,2)]+C

1 1
= _E(MZ +02)+ 5 logo? +E,[yxz—log(1 + exp(xz))]

1 1
= —E(,u2 +02)+ > log o2 + yxu — E,[log(1 + exp(xz))]

= We are stuck—we cannot analytically take the expectation.



= Try to calculate the ELBO:

£(u,0?)

Eq[logp(z) —logq(z) +logp(y |x, )]
= —%(,u2 +0?)+ % logo® + E,[logp(y|x,2)]+C

1 1
= _E(MZ +02)+ 5 logo? +E,[yxz—log(1 + exp(xz))]

1 1
= —E(,u2 +02)+ > log o2 + yxu — E,[log(1 + exp(xz))]
= We are stuck—we cannot analytically take the expectation.

= Q: Why not take gradients of MC estimates of the ELBO?

A: It's complicated to take gradients when the samples depend on the
variable you are optimizing, here the variational parameters



Options?

= Derive a model-specific bound
[Jordan and Jaakola 1996], [Braun and McAuliffe 2008], others

= Use other approximations (that require model-specific analysis)
[Wang and Blei 2013], [Knowles and Minka 2011]

= But neither satisfies the black box criteria.



Let’s derive BBVI

= Define the instantaneous ELBO

g(z, v) =logp(x,z) —logq(z; v).

The ELBO is its expectation

£ =K, [g(z,v)] = f q(z; v)g(z, v)dz



Let’s derive BBVI

= Define the instantaneous ELBO

g(z, v) =logp(x,z) —logq(z; v).

The ELBO is its expectation

£ =K, [g(z,v)] = f q(z; v)g(z, v)dz

= We want to calculate V, ¥ as an expectation.
(Then we can use Monte Carlo and stochastic gradients.)



Let’s derive BBVI

= Define the instantaneous ELBO

g(z, v) =logp(x,z) —logq(z; v).

The ELBO is its expectation

£ =K, [g(z,v)] = f q(z; v)g(z, v)dz

= We want to calculate V, ¥ as an expectation.
(Then we can use Monte Carlo and stochastic gradients.)

= Fact:

V,q(z; v) = q(z; )V, logq(z; v).

You can confirm it in your mind.



Derive the score gradient

= With this fact,

v,2 = vaq(z; v)g(z, v)dz



Derive the score gradient

= With this fact,

v, %

va q(z; v)g(z, v)dz

J V., q(z; v)g(z, v) + q(z; )V, g(z, v)dz



Derive the score gradient

= With this fact,

v.,Z va q(z; v)g(z, v)dz

J V., q(z; v)g(z, v) + q(z; )V, g(z, v)dz

f q(z; v)V,logq(z; v)g(z, v) + q(z; V)V, g(z, v)dz



Derive the score gradient

= With this fact,

v.,Z va q(z; v)g(z, v)dz

J V., q(z; v)g(z, v) + q(z; )V, g(z, v)dz

f q(z; v)V,logq(z; v)g(z, v) + q(z; V)V, g(z, v)dz

= Eq(z;v)[vvlogq(z5 v)g(z, V) + vvg(z: V)]



Derive the score gradient

= With this fact,

v.,Z va q(z; v)g(z, v)dz

J V., q(z; v)g(z, v) + q(z; )V, g(z, v)dz

f q(z; v)V,logq(z; v)g(z, v) + q(z; V)V, g(z, v)dz

= Eq(z;v)[vvlogq(z5 v)g(z, V) + vvg(z: V)]

= We have written the gradient as an expectation.



= The second term vanishes,

E,[V,g8(z, v)]=—E,[V,logq(z; )] = 0.



= The second term vanishes,

E,[V,g8(z, v)]=—E,[V,logq(z; )] = 0.

= What's left is the score gradient,

V& =By [V, logq(z; v)(logp(x,z) —logq(z; v))].



= The second term vanishes,

E,[V,g8(z, v)]=—E,[V,logq(z; )] = 0.

= What's left is the score gradient,

V& =By [V, logq(z; v)(logp(x,z) —logq(z; v))].

= Aside: Why is the expectation of the score function equal to zero?
E,[V,logq(z; v)] = f q(z; »)V, logq(z; v)dz
= f V,q(z; v)dz

= V,,f q(z;v)dz=V,1=0.



Derive the reparameterization gradient

= Assume logp(x,z) and log q(z) are differentiable with respect to z.

= Also assume that we can express the variational distribution with a
transformation, where

€ ~s(e€)
z=1t(e,v)
—z~q(z;9)

= Rewrite the ELBO using z = t(e, v),

£ = IES(E)[g(t(e’ v): 'V)]



= Now take the gradient of the ELBO with respect to ».



= Now take the gradient of the ELBO with respect to ».

= The gradient easily goes into the expectation. Then use the chain rule,
V, & = B[ V,(logp(z,x) —logq(z; »))V,t(e, v) — V, logq(z; v))].

Here we expanded the instantaneous ELBO and used chain rule for
functions of two variables,

df(x(),y(0) _ df df LD
de Cdxdt  dyde’



= Now take the gradient of the ELBO with respect to ».

= The gradient easily goes into the expectation. Then use the chain rule,
V, & = B[ V,(logp(z,x) —logq(z; »))V,t(e, v) — V, logq(z; v))].

Here we expanded the instantaneous ELBO and used chain rule for
functions of two variables,

df(x(),y(0) _ df df LD
de Cdxdt  dyde’

= The second term vanishes as above, —E[V , logq(z, v)] = 0.

The first terms provide the reparameterization gradient,

V, % =Ey,)[V,(logp(z,x) —logq(z; »))V,t(e, v)].



