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PROBABILISTIC MACHINE LEARNING

� ML methods that connect domain knowledge to data.

� Provides a computational methodology for analyzing data

� Goal: A methodology that is expressive, scalable, easy to develop



APPLIED BAYESIAN STATISTICS

� Statistical methods that connect domain knowledge to data.

� Provides a computational methodology for analyzing data

� Goal: A methodology that is expressive, scalable, easy to develop



Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei PNAS 2013]
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Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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Topics found in 1.8M articles from the New York Times

[Hoffman+ JMLR 2013]
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Population analysis of 2 billion genetic measurements

[Gopalan+ Nature Genetics 2016]



Neuroscience analysis of 220 million fMRI measurements

[Manning+ PLOS ONE 2014]



Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir+ JMLR 2016]
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The probabilistic pipeline
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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� Customized data analysis is important to many fields.

� Pipeline separates assumptions, computation, application

� Eases collaborative solutions to statistics problems
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� Posterior inference is the key algorithmic problem.

� Answers the question: What does this model say about this data?

� Today: Scalable and general approaches to posterior inference
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Criticize model

[Box, 1980; Rubin, 1984; Gelman+ 1996; Blei, 2014]



Bayesian statistics / Probabilistic machine learning

� A probabilistic model is a joint distribution of hidden variables z and
observed variables x,

p(z,x).

� Inference about the unknowns is through the posterior, the conditional
distribution of the hidden variables given the observations

p(z |x) =
p(z,x)
p(x)

.

� For most interesting models, the denominator is not tractable. We appeal
to approximate posterior inference.



Variational inference

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

� VI solves inference with optimization.
(Contrast this with MCMC.)

� Posit a variational family of distributions over the latent variables,

q(z;ν)

� Fit the variational parameters ν to be close (in KL) to the exact posterior.



Example: Mixture of Gaussians
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[images by Alp Kucukelbir; Blei+ 2017]
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[Peterson and Anderson 1987] (a) (b)

Si iµ

Sj jµ

Figure 22: (a) A node Si in a sigmoid belief network machine with its Markov blanket. (b)
The mean field equations yield a deterministic relationship, represented in the figure with
the dotted lines, between the variational parameters µi and µj for nodes j in the Markov
blanket of node i.

a tractable lower bound on the log likelihood and the variational parameter ξi can be
optimized along with the other variational parameters.

Saul and Jordan (1998) show that in the limiting case of networks in which each hidden
node has a large number of parents, so that a central limit theorem can be invoked, the
parameter ξi has a probabilistic interpretation as the approximate expectation of σ(zi),
where σ(·) is again the logistic function.

For fixed values of the parameters ξi, by differentiating the KL divergence with respect
to the variational parameters µi, we obtain the following consistency equations:

µi = σ

⎛
⎝∑

j

θijµj + θi0 +
∑

j

θji(µj − ξj) +
∑

j

Kji

⎞
⎠ (67)

where Kji is the derivative of − ln
〈
e−ξjzj + e(1−ξj)zj

〉
with respect to µi. As Saul, et al.

show, this term depends on node i, its child j, and the other parents (the “co-parents”) of
node j. Given that the first term is a sum over contributions from the parents of node i,
and the second term is a sum over contributions from the children of node i, we see that the
consistency equation for a given node again involves contributions from the Markov blanket
of the node (see Fig. 22). Thus, as in the case of the Boltzmann machine, we find that the
variational parameters are linked via their Markov blankets and the consistency equation
(Eq. (67)) can be interpreted as a local message-passing algorithm.

Saul, Jaakkola, and Jordan (1996) and Saul and Jordan (1998) also show how to update
the variational parameters ξi. The two papers utilize these parameters in slightly different
ways and obtain different update equations. (Yet another related variational approximation
for the sigmoid belief network, including both upper and lower bounds, is presented in
Jaakkola and Jordan, 1996).

Finally, we can compute the gradient with respect to the parameters θij for fixed vari-
ational parameters µ and ξ. The result obtained by Saul and Jordan (1998) takes the

39

[Jordan et al. 1999]

Figure 2: The final weights of the network. Each
large block represents one hidden unit. The small
black or white rectangles represent negative or
positive weights with the area of a rectangle rep
resenting the magnitude of the weight. The bot-
tom 12 rows in each block represent the incoming
weights of the hidden unit. The central weight at
the top of each block is the weight from the hidden
unit to the linear output unit. The weight at the
top-right of a block is the bias of the hidden unit.

‘~
-2 2

Figure 3: The final probability distribution that
is used for coding the weights. This distribution
is implemented by adapting the means, variances
and mixing proportions of five gauasians.

is clear that the weights form three fairly sharp clus-
ters. Figure 3 shows that the mixture of 5 Gaussians
has adapted to implement the appropriate coding-prior
for this weight distribution.

The performance of the network can be measured by
comparing the squared error it achievea on the test data
with the error that would be achieved by simply guess-
ing the mean of the correct answera for the test data:

Relative Error =
~c(dc - y.)’
~c(dc - ~)2

(27)

We ran the optimization five times using different ran-
domly chosen valuea for the initial means of the noisy
weights. For the network that achieved the lowest value
of the overall cost function, the relative error was 0.286.
This compares with a relative error of 0.967 for the same
network when we used noise-free weights and did not
penalize their information content. The best relative
error obtained using simple weight-decay with four non-
linear hidden units was .317. This required a carefully
chosen penalty coefficient for the squared weights that
corresponds to uf/a~ in equation 4. To set this weight-
decay coefficient appropriately it was necessary to try
many different values on a portion of the training set
and to use the remainder of the training set to decide
which coefficient gave the best generalization. Once the
beat coefficient had been determined the whole of the
training set was used with this coefficient. A lower er-
ror of 0.291 can be achieved using weight-decay if we
gradually increase the weight-decay coefficient and pick
the value that gives optimal performance on the test
data. But this is cheating. Linear regression gave a
huge relative error of 35.6 (gross overfitting) but this
fell to 0.291 when we penalized the sum of the squarea
of the regression coefficients by an amount that was ch~
sen to optimize performance on the test data. This is
almost identical to the performance with 4 hidden units
and optimal weight-decay probably because, with small
weights, the hidden units operate in their central linear
range, so the whole network is effectively linear.

11

[Hinton and van Camp 1993]

� Variational inference (VI) adapts ideas from statistical physics to
probabilistic inference. Peterson and Anderson (1987) fits a neural
network with mean-field methods.

� In the 1990s, M. Jordan, T. Jaakkola, L. Saul, and Z. Ghahramani
generalized it to many models. (A review paper is Jordan+ 1999.)

� In parallel, Hinton and Van Camp (1993) developed mean-field methods
for neural networks. Other applications included MoE (Waterhouse+
1996), HMMs (MacKay, 1997), and more NN (Barber and Bishop, 1998).



Today
(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p✓(x|z) with the learned parameters ✓.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p✓(z) = N (0, I) and the
posterior approximation q�(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and �
denote the variational mean and s.d. evaluated at datapoint i, and let µj and �j simply denote the
j-th element of these vectors. Then:

Z
q✓(z) log p(z) dz =

Z
N (z; µ,�2) log N (z;0, I) dz

= �J

2
log(2⇡)� 1

2

JX

j=1

(µ2
j + �2

j )

10

Stochastic Back-propagation in DLGMs

(a) NORB (b) CIFAR (c) Frey

Figure 4. a) Performance on the NORB dataset. Left: Samples from the training data. Right: sampled pixel means from
the model. b) Performance on CIFAR10 patches. Left: Samples from the training data. Right: Sampled pixel means
from the model. c) Frey faces data. Left: data samples. Right: model samples.

Figure 5. Imputation results on MNIST digits. The first
column shows the true data. Column 2 shows pixel loca-
tions set as missing in grey. The remaining columns show
imputations and denoising of the images for 15 iterations,
starting left to right. Top: 60% missingness. Middle: 80%
missingness. Bottom: 5x5 patch missing.

matics and experimental design. We show the ability
of the model to impute missing data using the MNIST
data set in figure 5. We test the imputation ability
under two di↵erent missingness types (Little & Rubin,
1987): Missing-at-random (MAR), where we consider
60% and 80% of the pixels to be missing randomly, and
Not Missing-at-random (NMAR), where we consider a
square region of the image to be missing. The model
produces very good completions in both test cases.
There is uncertainty in the identity of the image. This
is expected and reflected in the errors in these comple-
tions as the resampling procedure is run, and further
demonstrates the ability of the model to capture the
diversity of the underlying data. We do not integrate
over the missing values in our imputation procedure,
but use a procedure that simulates a Markov chain
that we show converges to the true marginal distribu-
tion. The procedure to sample from the missing pixels
given the observed pixels is explained in appendix E.

Figure 6. Two dimensional embedding of the MNIST data
set. Each colour corresponds to one of the digit classes.

6.5. Data Visualisation

Latent variable models such as DLGMs are often used
for visualisation of high-dimensional data sets. We
project the MNIST data set to a 2-dimensional latent
space and use this 2-D embedding as a visualisation of
the data. A 2-dimensional embedding of the MNIST
data set is shown in figure 6. The classes separate
into di↵erent regions indicating that such a tool can
be useful in gaining insight into the structure of high-
dimensional data sets.

7. Discussion

Our algorithm generalises to a large class of models
with continuous latent variables, which include Gaus-
sian, non-negative or sparsity-promoting latent vari-
ables. For models with discrete latent variables (e.g.,
sigmoid belief networks), policy-gradient approaches
that improve upon the REINFORCE approach remain
the most general, but intelligent design is needed to
control the gradient-variance in high dimensional set-
tings.

These models are typically used with a large number

[Kingma and Welling 2013] [Rezende et al. 2014]

xn

✓

˛ D 1:5; � D 1

N

data {
i n t N; // number o f ob s e rva t i on s
i n t x [N ] ; // d i s c r e t e - valued obs e rva t i on s

}
parameters {

// l a t e n t va r i ab l e , must be p o s i t i v e
r ea l < lower=0> theta ;

}
model {

// non - conjugate p r i o r f o r l a t e n t v a r i a b l e
theta ~ we ibu l l ( 1 . 5 , 1) ;

// l i k e l i h o o d
f o r (n in 1 :N)

x [ n ] ~ po i s son ( theta ) ;
}

Figure 2: Specifying a simple nonconjugate probability model in Stan.

analysis posits a prior density p.✓/ on the latent variables. Combining the likelihood with the prior
gives the joint density p.X;✓/ D p.X j ✓/ p.✓/.
We focus on approximate inference for di�erentiable probability models. These models have contin-
uous latent variables ✓ . They also have a gradient of the log-joint with respect to the latent variables
r✓ logp.X;✓/. The gradient is valid within the support of the prior supp.p.✓// D ˚

✓ j ✓ 2
RK and p.✓/ > 0

 ✓ RK , where K is the dimension of the latent variable space. This support set
is important: it determines the support of the posterior density and plays a key role later in the paper.
We make no assumptions about conjugacy, either full or conditional.2

For example, consider a model that contains a Poisson likelihood with unknown rate, p.x j ✓/. The
observed variable x is discrete; the latent rate ✓ is continuous and positive. Place a Weibull prior
on ✓ , defined over the positive real numbers. The resulting joint density describes a nonconjugate
di�erentiable probability model. (See Figure 2.) Its partial derivative @=@✓ p.x; ✓/ is valid within the
support of the Weibull distribution, supp.p.✓// D RC ⇢ R. Because this model is nonconjugate, the
posterior is not a Weibull distribution. This presents a challenge for classical variational inference.
In Section 2.3, we will see how ���� handles this model.

Many machine learning models are di�erentiable. For example: linear and logistic regression, matrix
factorization with continuous or discrete measurements, linear dynamical systems, and Gaussian pro-
cesses. Mixture models, hidden Markov models, and topic models have discrete random variables.
Marginalizing out these discrete variables renders these models di�erentiable. (We show an example
in Section 3.3.) However, marginalization is not tractable for all models, such as the Ising model,
sigmoid belief networks, and (untruncated) Bayesian nonparametric models.

2.2 Variational Inference

Bayesian inference requires the posterior density p.✓ j X/, which describes how the latent variables
vary when conditioned on a set of observations X. Many posterior densities are intractable because
their normalization constants lack closed forms. Thus, we seek to approximate the posterior.

Consider an approximating density q.✓ I �/ parameterized by �. We make no assumptions about its
shape or support. We want to find the parameters of q.✓ I �/ to best match the posterior according to
some loss function. Variational inference (��) minimizes the Kullback-Leibler (��) divergence from
the approximation to the posterior [2],

�⇤ D arg min
�

KL.q.✓ I �/ k p.✓ j X//: (1)

Typically the �� divergence also lacks a closed form. Instead we maximize the evidence lower bound
(����), a proxy to the �� divergence,

L.�/ D Eq.✓/
⇥

logp.X;✓/
⇤ � Eq.✓/

⇥
log q.✓ I �/

⇤
:

The first term is an expectation of the joint density under the approximation, and the second is the
entropy of the variational density. Maximizing the ���� minimizes the �� divergence [1, 16].

2The posterior of a fully conjugate model is in the same family as the prior; a conditionally conjugate model
has this property within the complete conditionals of the model [3].

3

[Kucukelbir et al. 2015]

� There is now a flurry of new work on variational inference, making it
scalable, easier to derive, faster, and more accurate.

� VI touches many areas: probabilistic programming, reinforcement
learning, neural networks, convex optimization, and Bayesian statistics.



Stochastic optimization makes VI better

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

� Stochastic VI scales up VI to massive data. [Hoffman+ 2013]

� Black box VI generalizes VI to a wide class of models. [Ranganath+ 2014]
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Stochastic Variational Inference



Motivation: Topic Modeling

Topic models use posterior inference to discover the hidden thematic
structure in a large collection of documents.



Model: Latent Dirichlet Allocation (LDA)

Documents exhibit multiple topics.



Latent Dirichlet Allocation (LDA)

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

� Each topic is a distribution over words

� Each document is a mixture of corpus-wide topics

� Each word is drawn from one of those topics



Latent Dirichlet Allocation (LDA)

Topics Documents Topic proportions and
assignments

� But we only observe the documents; everything else is hidden.

� So we want to calculate the posterior

p(topics, proportions, assignments |documents)

(Note: millions of documents; billions of latent variables)



LDA as a Graphical Model

Proportions
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
parameter

˛ ✓d zd;n wd;n ˇk
N D

⌘

K

� A schematic of the generative process

� Defines a factorization of the joint distribution

� Connects to assumptions and algorithms



Posterior Inference

˛ ✓d zd;n wd;n ˇk
N D

⌘

K

� The posterior of the latent variables given the documents is

p(β ,θ ,z |w) =
p(β ,θ ,z,w)

∫

β

∫

θ

∑

z p(β ,θ ,z,w)
.

� We can’t compute the denominator, the marginal p(w).

� We use variational inference.



Mean-field variational inference for LDA
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Mean-field variational inference for LDA

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



ST01CH10-Blei ARI 4 December 2013 17:0

Game

Second

Season
Team

Play

Games

Players

Points

Coach

Giants

1

House

Bush

Political

Party

Clinton
Campaign

Republican

Democratic

Senator
Democrats

6

School

Life

Children

Family

Says

Women

Help
Mother

Parents
Child

11

Street
School

House

Life

Children

Family
Says

Night

Man

Know

2

Percent

Street

House

Building

Real

Space
Development

Square
Housing

Buildings

7

Percent

Business

Market

Companies

Stock

Bank

Financial

Fund

Investors
Funds

12

Life

Says

Show

Man
Director

Television

Film

Story

Movie

Films

3

Game

Second
Team

Play

Won

Open

Race

Win

Round
Cup

8

Government

Life

War
Women

Political
Black

Church

Jewish

Catholic

Pope

13

House

Life

Children

Man

War

Book

Story

Books

Author

Novel

4

Game

Season

Team

Run
League

Games
Hit

Baseball

Yankees

Mets

9

Street

Show

Art
Museum

Works
Artists

Artist

Gallery

Exhibition
Paintings

14

Street

House

Night
Place

Park

Room

Hotel

Restaurant

Garden

Wine

5

Government

Officials

War
Military

Iraq

Army

Forces

Troops

Iraqi

Soldiers

10

Street

Yesterday
Police

Man

Case
Found

Officer

Shot

Officers

Charged

15

Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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Topics found in 1.8M articles from the New York Times



Mean-field VI and Stochastic VI

Subsample
data

Infer local 
structure

Update global 
structure

Road map:

� Define the generic class of conditionally conjugate models

� Derive classical mean-field VI

� Derive stochastic VI, which scales to massive data



Conditionally conjugate models

Global variables

Local variables

ˇ

xizi
n

p(β ,z,x) = p(β)
n
∏

i=1

p(zi, xi |β)

� The observations are x= x1:n.

� The local variables are z= z1:n.

� The global variables are β .

� The ith data point xi only depends on zi and β .

Compute p(β ,z |x).



Conditionally conjugate models

Global variables

Local variables

ˇ

xizi
n

p(β ,z,x) = p(β)
n
∏

i=1

p(zi, xi |β)

� A complete conditional is the conditional of a latent variable given the
observations and other latent variables.

� Assume each complete conditional is in the exponential family,

p(zi |β , xi) = expfam(zi ; η`(β , xi))
p(β |z,x) = expfam(β ; ηg(z,x)),

where expfam(z ; η) = h(z)exp{η>z− a(η)).



Conditionally conjugate models

Global variables

Local variables

ˇ

xizi
n

p(β ,z,x) = p(β)
n
∏

i=1

p(zi, xi |β)

� Bayesian mixture models

� Time series models
(HMMs, linear dynamic systems)

� Factorial models

� Matrix factorization
(factor analysis, PCA, CCA)

� Dirichlet process mixtures, HDPs

� Multilevel regression
(linear, probit, Poisson)

� Stochastic block models

� Mixed-membership models
(LDA and some variants)



Variational inference

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

Minimize KL between q(β ,z;ν) and the posterior p(β ,z |x).



The evidence lower bound

L (ν) = Eq [log p(β ,z,x)]
︸ ︷︷ ︸

Expected complete log likelihood

− Eq [log q(β ,z;ν)]
︸ ︷︷ ︸

Negative entropy

� KL is intractable; VI optimizes the evidence lower bound (ELBO) instead.

– It is a lower bound on log p(x).
– Maximizing the ELBO is equivalent to minimizing the KL.

� The ELBO trades off two terms.

– The first term prefers q(·) to place its mass on the MAP estimate.
– The second term encourages q(·) to be diffuse.

� Caveat: The ELBO is not convex.



Mean-field variational inference

ELBO

ˇ

xi
n

zi
n

zi

ˇ�

�i

� The form of q(β ,z) defines the variational family.

� The mean-field family is fully factorized,

q(β ,z ; λ,φ) = q(β ; λ)
n
∏

i=1

q(zi ; φi).

� Each factor is the same family as the model’s complete conditional.

p(β |z,x) = expfam(β ; ηg(z,x))

q(β ; λ) = expfam(β ; λ)



Mean-field variational inference

ELBO

ˇ

xi
n

zi
n

zi

ˇ�

�i

� Optimize the ELBO,

L (λ,φ) = Eq [log p(β ,z,x)]−Eq [log q(β ,z)] .

� Traditional VI uses coordinate ascent

λ∗ = Eφ
�

ηg(z,x)
�

; φ∗i = Eλ [η`(β , xi)]

It iteratively updates each parameter [Ghahramani and Beal, 2001] .

� Notice the relationship to Gibbs sampling [Gelfand and Smith, 1990] .



Mean-field variational inference for LDA

�ˇkwd;nzd;n�d˛
N D K

�d �d;n �k

� Local variables are per-document variables θd and zd.
Global variables are the topics β1, . . . ,βK.

� The mean-field family is

q(β ,θ ,z) =
K
∏

k=1

q(βk ; λk)
D
∏

d=1

q(θd ; γd)
N
∏

n=1

q(zd,n ; φd,n)

� Classical VI iteratively updates each variational parameter.



Mean-field variational inference for LDA
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Mean-field variational inference for LDA

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



Stochastic variational inference

�ˇkwd;nzd;n�d˛
N D K

�d �d;n �k

� Classical VI is inefficient:

– Do some local computation for each data point.
– Aggregate these computations to re-estimate global structure.
– Repeat.

� This cannot handle massive data.

� Stochastic variational inference (SVI) scales VI to massive data.



Stochastic variational inference

GLOBAL HIDDEN STRUCTURE

Subsample
data

Infer local 
structure

Update global 
structure

MASSIVE
DATA

LWK YRI ACB ASW CDX CHB CHS JPT KHV CEU FIN GBR IBS TSI MXL PUR CLM PEL GIH

pops
1
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.

28



Stochastic optimization

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

� Replace the gradient with cheaper noisy estimates [Robbins and Monro, 1951]

� Guaranteed to converge to a local optimum [Bottou, 1996]

� This algorithm has enabled modern machine learning.



Stochastic optimization

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

� Use noisy gradients to update

νt+1 = νt +ρt∇̂νL (νt)

� Requires unbiased gradients E
�

∇̂νL (ν)
�

=∇νL (ν)

� Requires the step size sequence ρt follows Robbins-Monro conditions



The complete conditional of the global variable

� The complete conditional of the global variable is

p(β |z,x) = expfam(β ; ηg(z,x))

ηg(z,x) = α+
∑n

i=1 t(zi, xi),

where t(·, ·) is a function and α is the hyperparameter to the prior.
(This is from classical theory of conjugate priors [Diaconis and Ylvisaker 1979].)

� The coordinate ascent update is

λ∗ = α+
∑n

i=1Eφi
[t(Zi, xi)]

� For large datasets, this update is expensive.



Stochastic variational inference

� The natural gradient of the ELBO [Amari, 1998; Sato, 2001; Hoffman+ 2013] :

∇nat
λ L (λ) =

�

α+
∑n

i=1Eφ∗i [t(Zi, xi)]
�

−λ.

� Construct a noisy natural gradient:

j∼ Uniform(1, . . . , n)

∇̂nat
λ L (λ) = α+ nEφ∗j [t(Zj, xj)]−λ.

� It is good for stochastic optimization.

– Its expectation is the exact gradient (unbiased).
– It only depends on optimized parameters of one data point (cheap).



Stochastic variational inference

Input: data x, model p(β ,z,x).

Initialize λ randomly. Set ρt appropriately.

while not converged do

Sample j∼ Unif(1, . . . , n). Set local parameter

φ← Eλ
�

η`(β , xj)
�

.

Set intermediate global parameter

λ̂= α+ nEφ[t(Zj, xj)].

Set global parameter

λ= (1−ρt)λ+ρt λ̂.

end
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Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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Topics using the HDP, found in 1.8M articles from the New York Times



Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei, PNAS 2013]
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Population analysis of 2 billion genetic measurements

[Gopalan+ Nature Genetics 2016]



SVI scales many models

Subsample
data

Infer local 
structure

Update global 
structure

� Bayesian mixture models

� Time series models
(HMMs, linear dynamic systems)

� Factorial models

� Matrix factorization
(factor analysis, PCA, CCA)

� Dirichlet process mixtures, HDPs

� Multilevel regression
(linear, probit, Poisson)

� Stochastic block models

� Mixed-membership models
(LDA and some variants)



Black Box Variational Inference



Variational inference

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

� VI solves inference with optimization.

� Posit a variational family of distributions over the latent variables.

� Fit the variational parameters ν to be close (in KL) to the exact posterior.



BLEI, NG, AND JORDAN

Finally, we expand Eq. (14) in terms of the model parameters (α,β) and the variational parameters
(γ,φ). Each of the five lines below expands one of the five terms in the bound:

L(γ,φ;α,β) = logΓ
�
∑k
j=1α j

�
�

k

∑
i=1
logΓ(αi)+

k

∑
i=1

(αi�1)
�
Ψ(γi)�Ψ

�
∑k
j=1 γ j

��

+
N

∑
n=1

k

∑
i=1

φni
�
Ψ(γi)�Ψ

�
∑k
j=1 γ j

��

+
N

∑
n=1

k

∑
i=1

V

∑
j=1

φniw j
n logβi j

� logΓ
�
∑k
j=1 γ j

�
+

k

∑
i=1
logΓ(γi)�

k

∑
i=1

(γi�1)
�
Ψ(γi)�Ψ

�
∑k
j=1 γ j

��

�
N

∑
n=1

k

∑
i=1

φni logφni,

(15)

where we have made use of Eq. (8).
In the following two sections, we show how to maximize this lower bound with respect to the

variational parameters φ and γ.

A.3.1 VARIATIONAL MULTINOMIAL

We first maximize Eq. (15) with respect to φni, the probability that the nth word is generated by
latent topic i. Observe that this is a constrained maximization since ∑k

i=1φni = 1.
We form the Lagrangian by isolating the terms which contain φni and adding the appropriate

Lagrange multipliers. Let βiv be p(wvn = 1 |zi = 1) for the appropriate v. (Recall that each wn is
a vector of size V with exactly one component equal to one; we can select the unique v such that
wvn = 1):

L[φni] = φni
�
Ψ(γi)�Ψ

�
∑k
j=1 γ j

��
+φni logβiv�φni logφni+λn

�
∑k
j=1φni�1

�
,

where we have dropped the arguments of L for simplicity, and where the subscript φni denotes that
we have retained only those terms in L that are a function of φni. Taking derivatives with respect to
φni, we obtain:

∂L
∂φni

=Ψ(γi)�Ψ
�
∑k
j=1 γ j

�
+ logβiv� logφni�1+λ.

Setting this derivative to zero yields the maximizing value of the variational parameter φni (cf. Eq. 6):

φni ∝ βiv exp
�
Ψ(γi)�Ψ

�
∑k
j=1 γ j

��
. (16)

1020

LATENT DIRICHLET ALLOCATION

A.3.2 VARIATIONAL DIRICHLET

Next, we maximize Eq. (15) with respect to γi, the ith component of the posterior Dirichlet param-
eter. The terms containing γi are:

L[γ] =
k

∑
i=1

(αi�1)
�
Ψ(γi)�Ψ

�
∑k
j=1 γ j

��
+

N

∑
n=1

φni
�
Ψ(γi)�Ψ

�
∑k
j=1 γ j

��

� logΓ
�
∑k
j=1 γ j

�
+ logΓ(γi)�

k

∑
i=1

(γi�1)
�
Ψ(γi)�Ψ

�
∑k
j=1 γ j

��
.

This simplifies to:

L[γ] =
k

∑
i=1

�
Ψ(γi)�Ψ

�
∑k
j=1 γ j

���
αi+∑N

n=1φni� γi
�
� logΓ

�
∑k
j=1 γ j

�
+ logΓ(γi).

We take the derivative with respect to γi:

∂L
∂γi

=Ψ0(γi)
�
αi+∑N

n=1φni� γi
�
�Ψ0 �∑k

j=1 γ j
� k

∑
j=1

�
α j +∑N

n=1φn j� γ j
�
.

Setting this equation to zero yields a maximum at:

γi = αi+∑N
n=1φni. (17)

Since Eq. (17) depends on the variational multinomial φ, full variational inference requires
alternating between Eqs. (16) and (17) until the bound converges.

A.4 Parameter estimation

In this final section, we consider the problem of obtaining empirical Bayes estimates of the model
parameters α and β. We solve this problem by using the variational lower bound as a surrogate
for the (intractable) marginal log likelihood, with the variational parameters φ and γ fixed to the
values found by variational inference. We then obtain (approximate) empirical Bayes estimates by
maximizing this lower bound with respect to the model parameters.

We have thus far considered the log likelihood for a single document. Given our assumption
of exchangeability for the documents, the overall log likelihood of a corpus D = {w1,w2, . . . ,wM}
is the sum of the log likelihoods for individual documents; moreover, the overall variational lower
bound is the sum of the individual variational bounds. In the remainder of this section, we abuse
notation by using L for the total variational bound, indexing the document-specific terms in the
individual bounds by d, and summing over all the documents.

Recall from Section 5.3 that our overall approach to finding empirical Bayes estimates is based
on a variational EM procedure. In the variational E-step, discussed in Appendix A.3, we maximize
the bound L(γ,φ;α,β) with respect to the variational parameters γ and φ. In the M-step, which we
describe in this section, we maximize the bound with respect to the model parameters α and β. The
overall procedure can thus be viewed as coordinate ascent in L .

1021

BLEI, NG, AND JORDAN

A.1 Computing E[log(θi |α)]

The need to compute the expected value of the log of a single probability component under the
Dirichlet arises repeatedly in deriving the inference and parameter estimation procedures for LDA.
This value can be easily computed from the natural parameterization of the exponential family
representation of the Dirichlet distribution.

Recall that a distribution is in the exponential family if it can be written in the form:

p(x |η) = h(x)exp
�
ηTT (x)�A(η)

 
,

where η is the natural parameter, T (x) is the sufficient statistic, and A(η) is the log of the normal-
ization factor.

We can write the Dirichlet in this form by exponentiating the log of Eq. (1):

p(θ |α) = exp
��
∑k
i=1(αi�1) logθi

�
+ logΓ

�
∑k
i=1αi

�
�∑k

i=1 logΓ(αi)
 

.

From this form, we immediately see that the natural parameter of the Dirichlet is ηi = αi� 1 and
the sufficient statistic is T (θi) = logθi. Furthermore, using the general fact that the derivative of
the log normalization factor with respect to the natural parameter is equal to the expectation of the
sufficient statistic, we obtain:

E[logθi |α] =Ψ(αi)�Ψ
�
∑k
j=1α j

�

where Ψ is the digamma function, the first derivative of the log Gamma function.

A.2 Newton-Raphson methods for a Hessian with special structure

In this section we describe a linear algorithm for the usually cubic Newton-Raphson optimization
method. This method is used for maximum likelihood estimation of the Dirichlet distribution (Ron-
ning, 1989, Minka, 2000).

The Newton-Raphson optimization technique finds a stationary point of a function by iterating:

αnew = αold�H(αold)
�1g(αold)

where H(α) and g(α) are the Hessian matrix and gradient respectively at the point α. In general,
this algorithm scales as O(N3) due to the matrix inversion.

If the Hessian matrix is of the form:

H = diag(h)+1z1T, (10)

where diag(h) is defined to be a diagonal matrix with the elements of the vector h along the diagonal,
then we can apply the matrix inversion lemma and obtain:

H�1 = diag(h)�1� diag(h)
�111Tdiag(h)�1

z�1+∑k
j=1 h

�1
j

Multiplying by the gradient, we obtain the ith component:

(H�1g)i =
gi� c
hi

1018

[from Blei+ 2003]



Black box variational inference
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� Easily use variational inference with any model; no more appendices!

� Perform inference with massive data

� No mathematical work beyond specifying the model



Model: Deep exponential families
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Deep exponential families
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Generalizes and expands probabilistic deep networks:

� Bernoulli, for binary representations [Sigmoid Belief Net, Neal 1992]

� Gaussian, for real representations [Deep Latent Gaussian Models, Rezende 2014]

� Poisson, for count representations

� Gamma, for positive (and sparse) representations
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� 160,000 documents; 8,500 vocabulary terms; 10M observed words

� The posterior weights provide topics and topics-of-topics.



Deep exponential families
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� We want to try lots of types of DEFs. But how to do inference?

� DEFs contain cascades of latent variables.

� DEFs are not conditionally conjugate.



Nonconjugate models

Global variables

Local variables

ˇ

xizi
n

p(β ,z,x) = p(β)
n
∏

i=1

p(zi, xi |β)

� Nonlinear time series models

� Deep latent Gaussian models

� Models with attention

� Generalized linear models

� Stochastic volatility models

� Discrete choice models

� Bayesian neural networks

� Deep exponential families

� Correlated topic models

� Sigmoid belief networks
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Black box variational inference

L (ν) = Eq [log p(β ,z,x)]
︸ ︷︷ ︸

Expected complete log likelihood

− Eq [log q(β ,z;ν)]
︸ ︷︷ ︸

Negative entropy

The main idea behind BBVI:

� write the gradient of the ELBO as an expectation

� sample from q(·) to form a Monte Carlo estimate of the gradient

� use the MC estimate in a stochastic optimization



Black box variational inference

L (ν) = Eq [log p(β ,z,x)]
︸ ︷︷ ︸

Expected complete log likelihood

− Eq [log q(β ,z;ν)]
︸ ︷︷ ︸

Negative entropy

� Keep in mind the black box criteria.

� We should only need to:

– sample from q(β ,z)
– evaluate things about q(β ,z)
– evaluate log p(β ,z,x)

� These criteria let us perform approximate inference on many models.



Black box variational inference

L (ν) = Eq [log p(β ,z,x)]
︸ ︷︷ ︸

Expected complete log likelihood

− Eq [log q(β ,z;ν)]
︸ ︷︷ ︸

Negative entropy

� Research in BBVI is about how to write the gradient as an expectation.

� While SVI uses stochastic optimization to overcome large datasets,
BBVI uses it to overcome difficult objective functions.

� Two main strategies:

– Score gradients (today)

– Reparameterization gradients (used e.g., in the VAE)



The score gradient

∇νL = Eq(z;ν)[∇ν log q(z;ν)
︸ ︷︷ ︸

score function

(log p(x,z)− log q(z;ν))
︸ ︷︷ ︸

instantaneous ELBO

]

� Use the score function to write the gradient as an expectation.
[Ji+ 2010; Paisley+ 2012; Wingate+ 2013; Ranganath+ 2014; Mnih+ 2014]

� Also called the likelihood ratio or REINFORCE gradient
[Glynn 1990; Williams 1992]

� Pushes ν to give high probability on z with large instantaneous ELBO.



The score gradient

∇νL = Eq(z;ν)[∇ν log q(z;ν)
︸ ︷︷ ︸

score function

(log p(x,z)− log q(z;ν))
︸ ︷︷ ︸

instantaneous ELBO

]

Satisfies the black box criteria — no model-specific analysis needed.

� sample from q(z;ν)

� evaluate ∇ν log q(z;ν)

� evaluate log p(x,z) and log q(z)



Black box variational inference

Input: data x, model p(z,x).

Initialize ν randomly. Set ρj appropriately.

while not converged do

Take S samples from the variational distribution

z[s]∼ q(z;ν) s= 1 . . . S

Calculate the noisy score gradient

g̃t =
1
S

S
∑

s=1

∇ν log q(z[s];νt)(log p(x,z[s])− log q(z[s];νt))

Update the variational parameters

νt+1 = νt +ρt g̃t

end
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BBVI: Making it work

REUSABLE 
VARIATIONAL 

FAMILIES

BLACK BOX 
VARIATIONAL 
INFERENCE

p.ˇ; z j x/ANY MODEL

REUSABLE 
VARIATIONAL 

FAMILIES
REUSABLE 

VARIATIONAL 
FAMILIES

MASSIVE
DATA

� Control the variance of the gradient [e.g., Paisley+ 2012; Ranganath+ 2014]

– Rao-Blackwellization, control variates, importance sampling

� Adaptive step sizes [e.g., Duchi+ 2011; Kingma and Ba 2014; Kucukelbir+ 2016]

� SVI, for massive data [Hoffman+ 2013]



Deep exponential families
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Empirical study of DEFs

� NYT and Science (about 150K documents in each, about 7K terms)

� Many models: adjusted depth, types of latents, priors, and link

� Held-out perplexity (lower is better) [Wallach+ 2009]



DEF evaluation

Model p(w) NYT Science

LDA [Blei+ 2003] 2717 1711
DocNADE [Larochelle+ 2012] 2496 1725

Sparse Gamma 100 ; 2525 1652
Sparse Gamma 100-30 Γ 2303 1539
Sparse Gamma 100-30-15 Γ 2251 1542

Sigmoid 100 ; 2343 1633
Sigmoid 100-30 N 2653 1665
Sigmoid 100-30-15 N 2507 1653

Poisson 100 ; 2590 1620
Poisson 100-30 N 2423 1560
Poisson 100-30-15 N 2416 1576
Poisson log-link 100-30 Γ 2288 1523
Poisson log-link 100-30-15 Γ 2366 1545



Neuroscience analysis of 220 million fMRI measurements

[Manning+ 2014]
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Shopper on 5.7M purchases.

[Ruiz+ 2017]



Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir+ 2017]



A Tour of Variational Inference (with one picture)



PROBABILISTIC MACHINE LEARNING

� ML methods that connect domain knowledge to data.

� Provides a computational methodology for analyzing data

� Goal: A methodology that is expressive, scalable, easy to develop



The probabilistic pipeline
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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� Posterior inference is the key algorithmic problem.

� Answers the question: What does this model say about this data?

� VI provides scalable and general approaches to posterior inference



Stochastic optimization makes VI better

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//
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⌫⇤q.zI ⌫/

� Stochastic VI scales up VI to massive data.

� Black box VI generalizes VI to a wide class of models.



What classes of models can VI handle?

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

� Conditionally conjugate [Gharamani and Beal 2001; Hoffman+ 2013]

� Not ↑, but can differentiate the log likelihood [Kucukelbir+ 2015]

� Not ↑, but can calculate the log likelihood [Ranganath+ 2014]

� Not ↑, but can sample from the model [Ranganath+ 2017]



How can we expand the variational family?

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

� Structured variational inference [Saul and Jordan 1996; Hoffman and Blei 2015]

� Variational models [Lawrence 2001; Ranganath+ 2015; Tran+ 2015]

� Amortized inference [Kingma and Welling 2014; Rezende+ 2014]

� Sequential Monte Carlo [Naesseth+ 2018; Maddison+ 2017; Le+ 2017]



Which distance should we use? How good is it?

p.z j x/
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⌫init

⌫⇤q.zI ⌫/

� Expectation propagation and inclusive KL [Minka 2001]

� Belief propagation [Yedidia 2001]

� Operator variational inference [Ranganath+ 2016]

� χ-variational inference [Dieng+ 2017]



Can we make the algorithm better?

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

� SVI and structured SVI [Hoffman+ 2013; Hoffman and Blei 2015]

� Proximity VI [Altosaar+ 2018]

� SGD as VI [Mandt+ 2017]

� Adaptive rates, averaged and biased gradients, etc. [Many papers]



What is guaranteed about VI?

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

� Asymptotic normality of Gaussian approximations [Hall+ 2011]

� Risk bounds for VI [Pati+ 2017]

� Bernstein Von-Mises, model misspecification [Wang and Blei 2019, 2020]

� Convergence rates for VI [Alquier+ 2016, Zhang and Gao 2019]



How can we use VI in practice?

p.z j x/
KL.q.zI ⌫⇤/ jjp.z j x//

⌫init

⌫⇤q.zI ⌫/

� Correct for VI’s underestimates of the posterior variance [Giordano+ 2015]

� Software for VI [Minka 2014, Kucukelbir+ 2016]

� Best practices for finding good local optima

� How to check variational inferences



References (from our group)

� D. Blei, A. Kucukelbir, J. McAuliffe. Variational inference: A review for
statisticians. Journal of American Statistical Association, 2017.

� M. Hoffman, D. Blei, C. Wang, J. Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 2013.

� R. Ranganath, S. Gerrish, D. Blei. Black box variational inference.
Artificial Intelligence and Statistics, 2014.

� A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, D. Blei. Automatic
differentiation variational inference. Journal of Machine Learning
Research, 2017.

� Y. Wang and D. Blei. Frequentist consistency of variational Bayes.
Journal of the American Statistical Association, 2019.



Extra slides



Should I be skeptical about variational inference?

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

10�1 100 101

�9
�7
�5
�3

Seconds

Av
er

ag
e

Lo
g

Pr
ed

ic
tiv

e

ADVI (M=1)
ADVI (M=10)

NUTS
HMC

(a) Linear Regression with ���

10�1 100 101 102

�1:5
�1:3
�1:1
�0:9
�0:7

Seconds

Av
er

ag
e

Lo
g

Pr
ed

ic
tiv

e

ADVI (M=1)
ADVI (M=10)

NUTS
HMC

(b) Hierarchical Logistic Regression

Figure 4: Hierarchical Generalized Linear Models.

we report predictive accuracy on held-out data as a function of time. We approximate the Bayesian
posterior predictive using �� integration. For the ���� techniques, we plug in posterior samples
into the likelihood. For ����, we do the same by drawing a sample from the posterior approximation
at fixed intervals during the optimization. We initialize ���� with a draw from a standard Gaussian.

We explore two hierarchical regression models, two matrix factorization models, and a mixture
model. All of these models have nonconjugate prior structures. We conclude by analyzing a dataset
of 250 000 images, where we report results across a range of minibatch sizes B .

3.1 A Comparison to Sampling: Hierarchical Regression Models

Consider two nonconjugate regression models: linear regression with automatic relevance determi-
nation (���) [16] and hiearchical logistic regression [23].

Linear Regression with ���. This is a sparse linear regression model with a hierarchical prior
structure. (Details in Appendix F.) We simulate a dataset with 250 regressors such that half of the
regressors have no predictive power. We use 10 000 training samples and hold out 1000 samples for
testing.

Logistic Regression with Spatial Hierarchical Prior. This is a hierarchical logistic regression
model from political science. The prior captures depedencies, such as states and regions, in a polling
dataset from the United States 1988 presidential election. The model is nonconjugate and would
require some form of approximation to derive a �� algorithm. (Details in Appendix G.)

We train using 10 000 samples and withold 1536 for evaluation. The regressors contain age, educa-
tion, and state and region indicators. The dimension of the regression problem is 145.

Results. Figure 4 plots average log predictive accuracy as a function of time. For these simple
models, all methods reach the same predictive accuracy. We study ���� with two settings ofM , the
number of �� samples used to estimate gradients. A single sample per iteration is su�cient; it also
is the fastest. (We set M D 1 from here on.)

3.2 Exploring nonconjugate Models: Non-negative Matrix Factorization

We continue by exploring two nonconjugate non-negative matrix factorization models: a constrained
Gamma Poisson model [24] and a Dirichlet Exponential model. Here, we show how easy it is to
explore new models using ����. In both models, we use the Frey Face dataset, which contains 1956
frames (28 ⇥ 20 pixels) of facial expressions extracted from a video sequence.

Constrained Gamma Poisson. This is a Gamma Poisson factorization model with an ordering
constraint: each row of the Gamma matrix goes from small to large values. (Details in Appendix H.)

Dirichlet Exponential. This is a nonconjugate Dirichlet Exponential factorization model with a
Poisson likelihood. (Details in Appendix I.)

7

� MCMC enjoys theoretical guarantees.

� But they usually get to the same place. [Kucukelbir+ 2016]

� We need more theory about variational inference ([E.g., Wang and Blei 2018] ).



Should I be skeptical about variational inference?
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� Variational inference underestimates the variance of the posterior.

� Relaxing the mean-field assumption can help.

� Here: A Poisson GLM [Giordano+ 2015]



Aside: The exponential family

p(x) = h(x)exp{η>t(x)− a(η)}

Terminology:

η the natural parameter

t(x) the sufficient statistics

a(η) the log normalizer

h(x) the base density



Aside: The exponential family

p(x) = h(x)exp{η>t(x)− a(η)}

� The log normalizer is

a(η) = log

∫

exp{η>t(x)}dx

� It ensures the density integrates to one.

� Its gradient calculates the expected sufficient statistics

E[t(X)] =∇η a(η).



Aside: The exponential family

p(x) = h(x)exp{η>t(x)− a(η)}

� Many common distributions are in the exponential family
– Bernoulli, categorical, Gaussian, Poisson, Beta, Dirichlet, Gamma, etc.

� Outlines the theory around conjugate priors and corresponding posteriors

� Connects closely to variational inference [Wainwright and Jordan, 2008]



Model: Shopper

� Economists want to understand how people shop

� Shopper is a Bayesian model of consumer behavior [Ruiz+ 2017] .

� Use it to understand patterns of purchasing behavior and estimate the
effects of interventions (e.g., on price)



Shopper

baby	items dog	items seasonal	fruits taco	ingredients

� Each customer walks into the store and sequentially chooses items, each
time maximizing utility. This leads to a joint:

p(yt) = p(yt1)p(yt2 |yt1) · · ·p
�

ytn |y
[n−1]
t

�

.

� The customer picks each item conditional on features of the other items.
These features capture that, e.g.,

– taco shells and beans go well together
– a customer doesn’t need to buy four different types of salsa
– people who buy dog food also usually buy dog treats

� But these features are latent!



Shopper

baby	items dog	items seasonal	fruits taco	ingredients

� The conditional probability of picking item c is a log linear model

p(yti = c |previously selected items)∝ exp{Ψtc}.

� The parameter is

Ψtc = ρ
>
c

 

i−1
∑

j=1

αytj

!

� This is an embedding method [Bengio+ 2003, Rudolph+ 2016] .

– αtaco : (latent) attributes of taco shells
– ρsalsa : attributes that go well with salsa



The Shopper posterior

CUSTOMER PREFERENCES

B
n

Basket1

To 1 IEEE Basket 2

J.ge jqgq.q etn

gOBSERVED DATASET

EMgA
tB

� From a dataset of shopping trips, infer the posterior p(α,ρ |x).

� Posterior of per-item attributes and per-item interaction coefficients

� 3,200 customers; 5,600 items; 570K trips; 5.7M purchased items



havarti w/dill primo taglio dv

wellington wtr crackers traditional

brie president

brie cambozola champignon
brie supreme dv

spread garlic/herb alouette

artichoke parm dip stonemill

dip spinach signature 16 oz

carrs cracker table water garlic & herb

cheddar smokey sharp deli counter dv

carrs cracker table water cracked pepper

wellington wtr crackers cracked pepper
mozz/proscuitto rl primo taglio

carrs crackers table water w/sesame

spread spinach alouette

dip artichoke cps toast garlic & cheese mussos

carrs crackers table water black

spread garlic herb lt alouette

brie ile de france cut/wrap

gouda domestic dv

gouda smoked deli counter dv

pep farm dist crackers quartet

toast tiny pride of fran

brie primo taglio

crackers water classic monet

crackers monet classic shp

alouette cheese spread sundrd tom w/bsl

wellington wtr crackers tsted ssme

brie mushroom champignon dv
brie camembert de france dv

carrs crackers whole wheat

pep farm cracker butter thins

brie marquis de lafayette

Shopper on 5.7M purchases.

[Ruiz+ 2017]



Shopper

baby	items dog	items seasonal	fruits taco	ingredients

� Shopper is not conditionally conjugate

� But we can evaluate log p(α,ρ,x) and its gradient ∇α,ρ log p(α,ρ,x).

� We can use BBVI with the reparameterization gradient.



Differentiable models

� Suppose log p(x,z) and log q(z) are differentiable with respect to z.

� Suppose the variational distribution can be written with a transformation,

ε∼ s(ε)
z= t(ε,ν)
→ z∼ q(z;ν).

For example,

ε∼ Normal(0,1)
z= εσ+µ

→ z∼ Normal(µ,σ2).

� Note: The variational parameters are part of the transformation,
but not the “noise” distribution.



evaluable differentiableall models conditionally 
conjugate



The reparameterization gradient

∇νL = Es(ε)



∇z[log p(x,z)− log q(z;ν)]
︸ ︷︷ ︸

gradient of instananeous ELBO

∇ν t(ε,ν)
︸ ︷︷ ︸

gradient of transformation





� This is the reparameterization gradient.
[Glasserman 1991; Fu 2006; Kingma+ 2014; Rezende+ 2014; Titsias+ 2014]

� Can use autodifferentiation to take gradients (especially of the model)

� Can use and reuse different transformations [e.g., Naesseth+ 2017]



Algorithm 1: *

Input: data x, model p(z,x).

Initialize ν randomly.
Set ρt appropriately.

while not converged do

Take S samples from the auxillary variable

εs ∼ s(ε) s= 1 . . . S

Calculate the noisy gradient

g̃t =
1
S

S
∑

s=1

∇z[log p(x, t(εs,νn))− log q(t(εs,νn);νn)]∇νt(εs,νn)

Update the variational parameters

νt+1 = νt +ρtg̃t

end
Reparameterization Black Box Variational Inference



Algorithm 2: *

Input: data x, model p(z,x).

Initialize ν randomly.
Set ρt appropriately.

while not converged do

Take S samples from the auxillary variable

εs ∼ s(ε) s= 1 . . . S

Calculate the noisy gradient

g̃t =
1
S

S
∑

s=1

∇z[log p(x, t(εs,νn))− log q(t(εs,νn);νn)]∇νt(εs,νn)

Update the variational parameters

νt+1 = νt +ρtg̃t

end
Reparameterization Black Box Variational Inference



Algorithm 3: *

Input: data x, model p(z,x).

Initialize ν randomly.
Set ρt appropriately.

while not converged do

Take S samples from the auxillary variable

εs ∼ s(ε) s= 1 . . . S

Calculate the noisy gradient

g̃t =
1
S

S
∑

s=1

∇z[log p(x, t(εs,νn))− log q(t(εs,νn);νn)]∇νt(εs,νn)

Update the variational parameters

νt+1 = νt +ρtg̃t

end
Reparameterization Black Box Variational Inference



Algorithm 4: *

Input: data x, model p(z,x).

Initialize ν randomly.
Set ρt appropriately.

while not converged do

Take S samples from the auxillary variable

εs ∼ s(ε) s= 1 . . . S

Calculate the noisy gradient

g̃t =
1
S

S
∑

s=1

∇z[log p(x, t(εs,νn))− log q(t(εs,νn);νn)]∇νt(εs,νn)

Update the variational parameters

νt+1 = νt +ρtg̃t

end
Reparameterization Black Box Variational Inference



Algorithm 5: *

Input: data x, model p(z,x).

Initialize ν randomly.
Set ρt appropriately.

while not converged do

Take S samples from the auxillary variable

εs ∼ s(ε) s= 1 . . . S

Calculate the noisy gradient

g̃t =
1
S

S
∑

s=1

∇z[log p(x, t(εs,νn))− log q(t(εs,νn);νn)]∇νt(εs,νn)

Update the variational parameters

νt+1 = νt +ρtg̃t

end
Reparameterization Black Box Variational Inference



Algorithm 6: *

Input: data x, model p(z,x).

Initialize ν randomly.
Set ρt appropriately.

while not converged do

Take S samples from the auxillary variable

εs ∼ s(ε) s= 1 . . . S

Calculate the noisy gradient

g̃t =
1
S

S
∑

s=1

∇z[log p(x, t(εs,νn))− log q(t(εs,νn);νn)]∇νt(εs,νn)

Update the variational parameters

νt+1 = νt +ρtg̃t

end
Reparameterization Black Box Variational Inference
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Shopper on 5.7M purchases.

[Ruiz+ 2017]



Analysis of 1.7M taxi trajectories, in Stan

[Kucukelbir+ 2017]



Score gradient

Eq(z;ν)[∇ν log q(z;ν)(log p(x,z)− log q(z;ν))]

� Works for discrete and continuous models
� Works for a large class of variational approximations
� But the variance of the noisy gradient can be large

Reparameterization gradient

Es(ε)[∇z[log p(x,z)− log q(z;ν)]∇νt(ε,ν)]

� Requires differentiable models, i.e., no discrete variables
� Requires variational approximation to have form z= t(ε,ν)
� Better behaved variance



Variance comparison

K���������, T���, R��������, G����� ��� B���

���� is not the only way to compute Monte Carlo approximations of the gradient of the ����.
Black box variational inference (����) takes a di�erent approach (Ranganath et al., 2014). The ����
gradient estimator uses the gradient of the variational approximation and avoids using the gradient of
the model. For example, the following ���� estimator

r����
� L D Eq.⇣ I�/

⇥r� log q.⇣ I �/
˚
logp

�
x; T �1.⇣/

�C log
ˇ̌
det JT�1.⇣/

ˇ̌ � log q.⇣ I �/
 ⇤

and the ���� gradient estimator in Equation (7) both lead to unbiased estimates of the exact gradient.
While ���� is more general—it does not require the gradient of the model and thus applies to more
settings—its gradients can su�er from high variance.

100 101 102 103

100

101

102

103

Number of �� samples

Va
ria

nc
e

(a) Univariate Model
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(b) Multivariate Nonlinear Regression Model

Figure 8: Comparison of gradient estimator variances. The ���� gradient estimator exhibits lower
variance than the ���� estimator. Moreover, it does not require control variate variance reduction,
which is not available in univariate situations.

Figure 8 empirically compares the variance of both estimators for two models. Figure 8a shows
the variance of both gradient estimators for a simple univariate model, where the posterior is a
Gamma.10; 10/. We estimate the variance using ten thousand re-calculations of the gradient r�L,
across an increasing number of �� samples M . The ���� gradient has lower variance; in practice, a
single sample su�ces. (See the experiments in Section 4.)

Figure 8b shows the same calculation for a 100-dimensional nonlinear regression model with
likelihood N .y j tanh.x>ˇ/; I/ and a Gaussian prior on the regression coe�cients ˇ. Because
this is a multivariate example, we also show the ���� gradient with a variance reduction scheme
using control variates described in Ranganath et al. (2014). In both cases, the ���� gradients is
computationally more e�cient.

3.3 Sensitivity to Transformations
���� uses a transformation T from the unconstrained space to the constrained space. We now study
how the choice of this transformation a�ects the non-Gaussian posterior approximation in the original
latent variable space.

Consider a posterior density in the Gamma family, with support over R>0. Figure 9 shows three
configurations of the Gamma, ranging from Gamma.1; 2/, which places most of its mass close to
✓ D 0, to Gamma.10; 10/, which is centered at ✓ D 1. Consider two transformations T1 and T2

T1 W ✓ 7! log.✓/ and T2 W ✓ 7! log.exp.✓/ � 1/;

16

[Kucukelbir+ 2017]



Models that can use the score gradient

evaluable differentiableall models conditionally 
conjugate



Models that can use the reparameterization gradient

evaluable differentiableall models conditionally 
conjugate



What is a variational autoencoder?



Deep generative models
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� Deep generative model [Kingma+ 2013; Rezende+ 2014]

zi ∼N (0, I)

xi ∼N (f(zi;θ ),σ
2),

where f(zi;θ ) is a neural network with parameters θ and input zi.



Deep generative models

 

D t
I MODEL

ii z z on pk i xi tos
iZi i Xi decoder

f 2i o

l I U VARIAT1ONAL

i t DISTRIBuTI0N

i t.IEzFzFI giz i i xi usi i
i

eneoder
gCxi u

D f I I UI t
i ii
son imi l iZi i Xi t

i

f l zi o og xi u

MODEL VARIAT1ONAL
DISTRIBuTION

� Fix the global parameters θ . Infer the local variables zi,

p(zi |xi,θ ) =
p(zi)p(xi | zi,θ )

∫

p(z′i)p(xi | z′i ,θ )dz′i

� This inference is intractable because of the integral in the denominator.



Amortized inference
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� Use VI at the local level, aiming to fit a q(zi) that is close to the posterior.

� Amortization: the variational family q(zi; xi,ν) is a function of the input xi
and shared variational parameters ν [Gershman and Goodman 2014] .

� Let q(zi; xi,ν) be N (g(xi;ν), 1), where g(xi;ν) is the inference network;
it has parameters ν and input xi.



The variational autoencoder
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� Amortization ties together the ELBO for each zi. The objective is

L (ν) =
n
∑

i=1

Eq(zi;xi,ν) [log p(zi) + log p(xi | zi,θ )− log q(zi; xi,ν)] .

� The expectation in the ith term uses q(zi; xi,ν).

� Amortization is about “learning to infer.”
(Open research: there seems to be more to this story.)



The variational autoencoder

 

D t
I MODEL

ii z z on pk i xi tos
iZi i Xi decoder

f 2i o

l I U VARIAT1ONAL

i t DISTRIBuTI0N

i t.IEzFzFI giz i i xi usi i
i

eneoder
gCxi u

D f I I UI t
i ii
son imi l iZi i Xi t

i

f l zi o og xi u

MODEL VARIAT1ONAL
DISTRIBuTION

� Use the reparameterization gradient.

� First write zi down as a transformation,

ε ∼N (0, 1)
t(ε, xi,ν) = ε + g(xi;ν).

� This transformation involves variational parameters ν and datapoint xi.



The variational autoencoder
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� With the amortized family, the reparameterization gradient is

∇νL =
n
∑

i=1

Es(ε)

�

∇zi
(log p(zi) + log p(xi | zi,θ )− log q(zi; xi,ν))∇νt(ε,ν, xi)

�

.

� We can calculate this gradient with Monte Carlo.

� The gradients involved—of the log likelihood, log variational factor, and
transformation—involve standard NN calculations (i.e., backprop) of
either the model’s NN (θ) or the variational NN (ν).



Fitting the model 
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� The ELBO is a bound on the log likelihood log p(x;θ ).

� Fit the model by following its gradient with respect to θ ,

∇θL =
n
∑

i=1

Es(ε) [∇θ log p(x | zi,θ )] .

Here again

zi = t(ε, xi,ν).



So what is a VAE?
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� Simultaneously optimize the variational family ν and model θ .

� A VAE

– samples εi for each datapoint and calculates zi.
– uses these samples to calculate noisy gradients with respect to ν and θ .
– follows those gradients in a stochastic optimization

� (VAEs are implemented as a stochastic computational graph of the MC
approximation of the ELBO; backprop takes care of the rest.)



Algorithm 7: *

Input: data x.

Initialize ν randomly; set ρt appropriately.

while not converged do

for each datapoint i do
Draw the noise variable and calculate the latent variable

εi ∼N (0,1); zi = t(εi, xi,ν)

end

Calculate the noisy gradients

g̃ν =
∑n

i=1∇zi
(log p(zi) + log p(xi | zi,θt)− log q(zi; xi,νt))∇νt(εi, xi,νt)

g̃θ =
∑n

i=1∇θ log p(xi | zi,θt)

Update the variational parameters and model parameters

νt+1 = νt +ρtg̃ν
θt+1 = θt +ρtg̃θ

end
The variational autoencoder



Algorithm 8: *

Input: data x.

Initialize ν randomly; set ρt appropriately.

while not converged do

for each datapoint i do
Draw the noise variable and calculate the latent variable

εi ∼N (0,1); zi = t(εi, xi,ν)

end

Calculate the noisy gradients

g̃ν =
∑n

i=1∇zi
(log p(zi) + log p(xi | zi,θt)− log q(zi; xi,νt))∇νt(εi, xi,νt)

g̃θ =
∑n

i=1∇θ log p(xi | zi,θt)

Update the variational parameters and model parameters

νt+1 = νt +ρtg̃ν
θt+1 = θt +ρtg̃θ

end
The variational autoencoder



Algorithm 9: *

Input: data x.

Initialize ν randomly; set ρt appropriately.

while not converged do

for each datapoint i do
Draw the noise variable and calculate the latent variable

εi ∼N (0,1); zi = t(εi, xi,ν)

end

Calculate the noisy gradients

g̃ν =
∑n

i=1∇zi
(log p(zi) + log p(xi | zi,θt)− log q(zi; xi,νt))∇νt(εi, xi,νt)

g̃θ =
∑n

i=1∇θ log p(xi | zi,θt)

Update the variational parameters and model parameters

νt+1 = νt +ρtg̃ν
θt+1 = θt +ρtg̃θ

end
The variational autoencoder



Algorithm 10: *

Input: data x.

Initialize ν randomly; set ρt appropriately.

while not converged do

for each datapoint i do
Draw the noise variable and calculate the latent variable

εi ∼N (0, 1); zi = t(εi, xi,ν)

end

Calculate the noisy gradients

g̃ν =
∑n

i=1∇zi
(log p(zi) + log p(xi | zi,θt)− log q(zi; xi,νt))∇νt(εi, xi,νt)

g̃θ =
∑n

i=1∇θ log p(xi | zi,θt)

Update the variational parameters and model parameters

νt+1 = νt +ρtg̃ν
θt+1 = θt +ρtg̃θ

end
The variational autoencoder



Algorithm 11: *

Input: data x.

Initialize ν randomly; set ρt appropriately.

while not converged do

for each datapoint i do
Draw the noise variable and calculate the latent variable

εi ∼N (0, 1); zi = t(εi, xi,ν)

end

Calculate the noisy gradients

g̃ν =
∑n

i=1∇zi
(log p(zi) + log p(xi | zi,θt)− log q(zi; xi,νt))∇νt(εi, xi,νt)

g̃θ =
∑n

i=1∇θ log p(xi | zi,θt)

Update the variational parameters and model parameters

νt+1 = νt +ρtg̃ν
θt+1 = θt +ρtg̃θ

end
The variational autoencoder



Algorithm 12: *

Input: data x.

Initialize ν randomly; set ρt appropriately.

while not converged do

for each datapoint i do
Draw the noise variable and calculate the latent variable

εi ∼N (0, 1); zi = t(εi, xi,ν)

end

Calculate the noisy gradients

g̃ν =
∑n

i=1∇zi
(log p(zi) + log p(xi | zi,θt)− log q(zi; xi,νt))∇νt(εi, xi,νt)

g̃θ =
∑n

i=1∇θ log p(xi | zi,θt)

Update the variational parameters and model parameters

νt+1 = νt +ρtg̃ν
θt+1 = θt +ρtg̃θ

end
The variational autoencoder



Let’s derive BBVI!



Why do we need black box variational inference?

� Here is a recipe for variational inference

– Posit a model

– Choose a variational family

– Integrate (calculate the ELBO)

– Take derivatives

– Optimize

� What can go wrong?



A simple failure

� Take the simplest machine learning model, Bayesian logistic regression.

� Data are pairs (xi, yi)

– xi is a covariate

– yi ∈ {0, 1} is a binary label

– z are the regression coefficients

� Conditional on covariates, Bayesian LR posits a generative process of labels

z∼ N(0,1)
yi |xi, z∼ Bernoulli(σ(zxi)),

where σ(·) is the logistic function, mapping reals to (0,1).



� Consider just one data point (x, y). Set y = 1, so the datapoint is (x, 1).

� The goal is to approximate the posterior coefficient p(z |x, y).

� The variational family q(z;ν) is a normal; ν= (µ,σ2). The ELBO is

L (µ,σ2) = Eq[log p(z) + log p(y |x, z)− log q(z)]



� Try to calculate the ELBO:

L (µ,σ2) = Eq[log p(z)− log q(z) + log p(y |x, z)]

= −
1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[log p(y |x, z)] + C

= −
1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[yxz− log(1+ exp(xz))]

= −
1
2
(µ2 +σ2) +

1
2

logσ2 + yxµ−Eq[log(1+ exp(xz))]

� We are stuck—we cannot analytically take the expectation.

� Q: Why not take gradients of MC estimates of the ELBO?

A: It’s complicated to take gradients when the samples depend on the
variable you are optimizing, here the variational parameters
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A: It’s complicated to take gradients when the samples depend on the
variable you are optimizing, here the variational parameters



� Try to calculate the ELBO:

L (µ,σ2) = Eq[log p(z)− log q(z) + log p(y |x, z)]

= −
1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[log p(y |x, z)] + C

= −
1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[yxz− log(1+ exp(xz))]

= −
1
2
(µ2 +σ2) +

1
2

logσ2 + yxµ−Eq[log(1+ exp(xz))]

� We are stuck—we cannot analytically take the expectation.

� Q: Why not take gradients of MC estimates of the ELBO?

A: It’s complicated to take gradients when the samples depend on the
variable you are optimizing, here the variational parameters



� Try to calculate the ELBO:

L (µ,σ2) = Eq[log p(z)− log q(z) + log p(y |x, z)]

= −
1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[log p(y |x, z)] + C

= −
1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[yxz− log(1+ exp(xz))]

= −
1
2
(µ2 +σ2) +

1
2

logσ2 + yxµ−Eq[log(1+ exp(xz))]

� We are stuck—we cannot analytically take the expectation.

� Q: Why not take gradients of MC estimates of the ELBO?

A: It’s complicated to take gradients when the samples depend on the
variable you are optimizing, here the variational parameters



� Try to calculate the ELBO:

L (µ,σ2) = Eq[log p(z)− log q(z) + log p(y |x, z)]

= −
1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[log p(y |x, z)] + C

= −
1
2
(µ2 +σ2) +

1
2

logσ2 +Eq[yxz− log(1+ exp(xz))]

= −
1
2
(µ2 +σ2) +

1
2

logσ2 + yxµ−Eq[log(1+ exp(xz))]

� We are stuck—we cannot analytically take the expectation.

� Q: Why not take gradients of MC estimates of the ELBO?

A: It’s complicated to take gradients when the samples depend on the
variable you are optimizing, here the variational parameters



Options?

� Derive a model-specific bound
[Jordan and Jaakola 1996], [Braun and McAuliffe 2008], others

� Use other approximations (that require model-specific analysis)
[Wang and Blei 2013], [Knowles and Minka 2011]

� But neither satisfies the black box criteria.



Let’s derive BBVI

� Define the instantaneous ELBO

g(z,ν) = log p(x,z)− log q(z;ν).

The ELBO is its expectation

L = Eq [g(z,ν)] =

∫

q(z;ν)g(z,ν)dz

� We want to calculate ∇νL as an expectation.
(Then we can use Monte Carlo and stochastic gradients.)

� Fact:

∇ν q(z;ν) = q(z;ν)∇ν log q(z;ν).

You can confirm it in your mind.
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Derive the score gradient

� With this fact,

∇νL = ∇ν

∫

q(z;ν)g(z,ν)dz

=

∫

∇ν q(z;ν)g(z,ν) + q(z;ν)∇ν g(z,ν)dz

=

∫

q(z;ν)∇ν log q(z;ν)g(z,ν) + q(z;ν)∇ν g(z,ν)dz

= Eq(z;ν)[∇ν log q(z;ν)g(z,ν) +∇ν g(z,ν)]

� We have written the gradient as an expectation.
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� The second term vanishes,

Eq[∇ν g(z,ν)] = −Eq[∇ν log q(z;ν)] = 0.

� What’s left is the score gradient,

∇νL = Eq(z;ν)[∇ν log q(z;ν)(log p(x,z)− log q(z;ν))].

� Aside: Why is the expectation of the score function equal to zero?

Eq[∇ν log q(z;ν)] =

∫

q(z;ν)∇ν log q(z;ν)dz

=

∫

∇νq(z;ν)dz

=∇ν

∫

q(z;ν)dz=∇ν 1= 0.
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Derive the reparameterization gradient

� Assume log p(x,z) and log q(z) are differentiable with respect to z.

� Also assume that we can express the variational distribution with a
transformation, where

ε∼ s(ε)
z= t(ε,ν)
→ z∼ q(z;ν)

� Rewrite the ELBO using z= t(ε,ν),

L = Es(ε)[g(t(ε,ν),ν)].



� Now take the gradient of the ELBO with respect to ν.

� The gradient easily goes into the expectation. Then use the chain rule,

∇νL = Es(ε)[∇z(log p(z,x)− log q(z;ν))∇νt(ε,ν)−∇ν log q(z;ν))].

Here we expanded the instantaneous ELBO and used chain rule for
functions of two variables,

df(x(t), y(t))
dt

=
df
dx

df
dt
+

df
dy

dy
dt

.

� The second term vanishes as above, −E[∇ν log q(z,ν)] = 0.

The first terms provide the reparameterization gradient,

∇νL = Es(ε)[∇z(log p(z,x)− log q(z;ν))∇νt(ε,ν)].
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